本文整理汇总了Python中tensorflow.select方法的典型用法代码示例。如果您正苦于以下问题:Python tensorflow.select方法的具体用法?Python tensorflow.select怎么用?Python tensorflow.select使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow
的用法示例。
在下文中一共展示了tensorflow.select方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: sample_from_discretized_mix_logistic
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import select [as 别名]
def sample_from_discretized_mix_logistic(l,nr_mix):
ls = int_shape(l)
xs = ls[:-1] + [3]
# unpack parameters
logit_probs = l[:, :, :, :nr_mix]
l = tf.reshape(l[:, :, :, nr_mix:], xs + [nr_mix*3])
# sample mixture indicator from softmax
sel = tf.one_hot(tf.argmax(logit_probs - tf.log(-tf.log(tf.random_uniform(logit_probs.get_shape(), minval=1e-5, maxval=1. - 1e-5))), 3), depth=nr_mix, dtype=tf.float32)
sel = tf.reshape(sel, xs[:-1] + [1,nr_mix])
# select logistic parameters
means = tf.reduce_sum(l[:,:,:,:,:nr_mix]*sel,4)
log_scales = tf.maximum(tf.reduce_sum(l[:,:,:,:,nr_mix:2*nr_mix]*sel,4), -7.)
coeffs = tf.reduce_sum(tf.nn.tanh(l[:,:,:,:,2*nr_mix:3*nr_mix])*sel,4)
# sample from logistic & clip to interval
# we don't actually round to the nearest 8bit value when sampling
u = tf.random_uniform(means.get_shape(), minval=1e-5, maxval=1. - 1e-5)
x = means + tf.exp(log_scales)*(tf.log(u) - tf.log(1. - u))
x0 = tf.minimum(tf.maximum(x[:,:,:,0], -1.), 1.)
x1 = tf.minimum(tf.maximum(x[:,:,:,1] + coeffs[:,:,:,0]*x0, -1.), 1.)
x2 = tf.minimum(tf.maximum(x[:,:,:,2] + coeffs[:,:,:,1]*x0 + coeffs[:,:,:,2]*x1, -1.), 1.)
return tf.concat([tf.reshape(x0,xs[:-1]+[1]), tf.reshape(x1,xs[:-1]+[1]), tf.reshape(x2,xs[:-1]+[1])],3)
示例2: huber_loss
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import select [as 别名]
def huber_loss(y_true, y_pred, clip_value):
# Huber loss, see https://en.wikipedia.org/wiki/Huber_loss and
# https://medium.com/@karpathy/yes-you-should-understand-backprop-e2f06eab496b
# for details.
assert clip_value > 0.
x = y_true - y_pred
if np.isinf(clip_value):
# Spacial case for infinity since Tensorflow does have problems
# if we compare `K.abs(x) < np.inf`.
return .5 * K.square(x)
condition = K.abs(x) < clip_value
squared_loss = .5 * K.square(x)
linear_loss = clip_value * (K.abs(x) - .5 * clip_value)
import tensorflow as tf
if hasattr(tf, 'select'):
return tf.select(condition, squared_loss, linear_loss) # condition, true, false
else:
return tf.where(condition, squared_loss, linear_loss) # condition, true, false
示例3: sample_from_discretized_mix_logistic
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import select [as 别名]
def sample_from_discretized_mix_logistic(l,nr_mix):
ls = int_shape(l)
xs = ls[:-1] + [3]
# unpack parameters
logit_probs = l[:, :, :, :nr_mix]
l = tf.reshape(l[:, :, :, nr_mix:], xs + [nr_mix*3])
# sample mixture indicator from softmax
sel = tf.one_hot(tf.argmax(logit_probs - tf.log(-tf.log(tf.random_uniform(logit_probs.get_shape(), minval=1e-5, maxval=1. - 1e-5))), 3), depth=nr_mix, dtype=tf.float32)
sel = tf.reshape(sel, xs[:-1] + [1,nr_mix])
# select logistic parameters
means = tf.reduce_sum(l[:,:,:,:,:nr_mix]*sel,4)
log_scales = tf.maximum(tf.reduce_sum(l[:,:,:,:,nr_mix:2*nr_mix]*sel,4), -7.)
coeffs = tf.reduce_sum(tf.nn.tanh(l[:,:,:,:,2*nr_mix:3*nr_mix])*sel,4)
# sample from logistic & clip to interval
# we don't actually round to the nearest 8bit value when sampling
u = tf.random_uniform(means.get_shape(), minval=1e-5, maxval=1. - 1e-5)
x = means + tf.exp(log_scales)*(tf.log(u) - tf.log(1. - u))
x0 = tf.minimum(tf.maximum(x[:,:,:,0], -1.), 1.)
x1 = tf.minimum(tf.maximum(x[:,:,:,1] + coeffs[:,:,:,0]*x0, -1.), 1.)
x2 = tf.minimum(tf.maximum(x[:,:,:,2] + coeffs[:,:,:,1]*x0 + coeffs[:,:,:,2]*x1, -1.), 1.)
return tf.concat(3,[tf.reshape(x0,xs[:-1]+[1]), tf.reshape(x1,xs[:-1]+[1]), tf.reshape(x2,xs[:-1]+[1])])
示例4: _compute_huber
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import select [as 别名]
def _compute_huber(predictions, labels, delta=1.0):
predictions.get_shape().assert_is_compatible_with(labels.get_shape())
predictions = tf.to_float(predictions)
labels = tf.to_float(labels)
delta = tf.to_float(delta)
diff = predictions - labels
diff_abs = tf.abs(diff)
delta_fact = 0.5 * tf.square(delta)
condition = tf.less(diff_abs, delta)
left_opt = 0.5 * tf.square(diff)
right_opt = delta * diff_abs - delta_fact
losses_val = tf.select(condition, left_opt, right_opt)
return losses_val
# Returns non-reduced tensor of unweighted losses with batch dimension matching inputs
示例5: broadcast
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import select [as 别名]
def broadcast(tensor, target_tensor):
"""Broadcast a tensor to match the shape of a target tensor.
Args:
tensor (Tensor): tensor to be tiled
target_tensor (Tensor): tensor whose shape is to be matched
"""
rank = lambda t: t.get_shape().ndims
assert rank(tensor) == rank(target_tensor) # TODO: assert that tensors have no overlapping non-unity dimensions
orig_shape = tf.shape(tensor)
target_shape = tf.shape(target_tensor)
# if dim == 1, set it to target_dim
# else, set it to 1
tiling_factor = tf.select(tf.equal(orig_shape, 1), target_shape, tf.ones([rank(tensor)], dtype=tf.int32))
broadcasted = tf.tile(tensor, tiling_factor)
# Add static shape information
broadcasted.set_shape(target_tensor.get_shape())
return broadcasted
示例6: change_pad_value
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import select [as 别名]
def change_pad_value(values, mask, pad_val):
"""Given a set of values and a pad mask, change the value of all pad entries.
Args:
values (Tensor): of shape [batch_size, seq_length, :, ..., :].
mask (Tensor): binary float tensor of shape [batch_size, seq_length]
pad_val (float): value to set all pad entries to
Returns:
Tensor: a new Tensor of same shape as values
"""
# broadcast the mask to match shape of values
mask = expand_dims_for_broadcast(mask, values) # (batch_size, seq_length, 1, ..., 1)
mask = broadcast(mask, values)
mask = tf.cast(mask, tf.bool) # cast to bool
# broadcast val
broadcast_val = pad_val * tf.ones(tf.shape(values))
new_values = tf.select(mask, values, broadcast_val)
return new_values
示例7: compute_first_or_last
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import select [as 别名]
def compute_first_or_last(self, select, first=True):
#perform first ot last operation on row select with probabilistic row selection
answer = tf.zeros_like(select)
running_sum = tf.zeros([self.batch_size, 1], self.data_type)
for i in range(self.max_elements):
if (first):
current = tf.slice(select, [0, i], [self.batch_size, 1])
else:
current = tf.slice(select, [0, self.max_elements - 1 - i],
[self.batch_size, 1])
curr_prob = current * (1 - running_sum)
curr_prob = curr_prob * tf.cast(curr_prob >= 0.0, self.data_type)
running_sum += curr_prob
temp_ans = []
curr_prob = tf.expand_dims(tf.reshape(curr_prob, [self.batch_size]), 0)
for i_ans in range(self.max_elements):
if (not (first) and i_ans == self.max_elements - 1 - i):
temp_ans.append(curr_prob)
elif (first and i_ans == i):
temp_ans.append(curr_prob)
else:
temp_ans.append(tf.zeros_like(curr_prob))
temp_ans = tf.transpose(tf.concat(0, temp_ans))
answer += temp_ans
return answer
示例8: switch
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import select [as 别名]
def switch(condition, then_tensor, else_tensor):
"""
Keras' implementation of switch for tensorflow uses tf.switch which accepts only scalar conditions.
It should use tf.select instead.
"""
if K.backend() == 'tensorflow':
import tensorflow as tf
condition_shape = condition.get_shape()
input_shape = then_tensor.get_shape()
if condition_shape[-1] != input_shape[-1] and condition_shape[-1] == 1:
# This means the last dim is an embedding dim. Keras does not mask this dimension. But tf wants
# the condition and the then and else tensors to be the same shape.
condition = K.dot(tf.cast(condition, tf.float32), tf.ones((1, input_shape[-1])))
return tf.select(tf.cast(condition, dtype=tf.bool), then_tensor, else_tensor)
else:
import theano.tensor as T
return T.switch(condition, then_tensor, else_tensor)
示例9: p_ternarize
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import select [as 别名]
def p_ternarize(x, p):
x = tf.tanh(x)
shape = x.get_shape()
thre = tf.get_variable('T', trainable=False, collections=[tf.GraphKeys.VARIABLES, 'thresholds'],
initializer=0.05)
flat_x = tf.reshape(x, [-1])
k = int(flat_x.get_shape().dims[0].value * (1 - p))
topK, _ = tf.nn.top_k(tf.abs(flat_x), k)
update_thre = thre.assign(topK[-1])
tf.add_to_collection('update_thre_op', update_thre)
mask = tf.zeros(shape)
mask = tf.select((x > thre) | (x < -thre), tf.ones(shape), mask)
with G.gradient_override_map({"Sign": "Identity", "Mul": "Add"}):
w = tf.sign(x) * tf.stop_gradient(mask)
tf.histogram_summary(w.name, w)
return w
示例10: tw_ternarize
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import select [as 别名]
def tw_ternarize(x, thre):
shape = x.get_shape()
thre_x = tf.stop_gradient(tf.reduce_max(tf.abs(x)) * thre)
w_p = tf.get_variable('Wp', collections=[tf.GraphKeys.VARIABLES, 'positives'], initializer=1.0)
w_n = tf.get_variable('Wn', collections=[tf.GraphKeys.VARIABLES, 'negatives'], initializer=1.0)
tf.scalar_summary(w_p.name, w_p)
tf.scalar_summary(w_n.name, w_n)
mask = tf.ones(shape)
mask_p = tf.select(x > thre_x, tf.ones(shape) * w_p, mask)
mask_np = tf.select(x < -thre_x, tf.ones(shape) * w_n, mask_p)
mask_z = tf.select((x < thre_x) & (x > - thre_x), tf.zeros(shape), mask)
with G.gradient_override_map({"Sign": "Identity", "Mul": "Add"}):
w = tf.sign(x) * tf.stop_gradient(mask_z)
w = w * mask_np
tf.histogram_summary(w.name, w)
return w
示例11: draw_samples
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import select [as 别名]
def draw_samples(self, mean_activation, method ='forward'):
"""INTENT : Draw samples from distribution of specified parameter
------------------------------------------------------------------------------------------------------------------------------------------
PARAMETERS :
mean_activation : parameter of the distribution to draw sampels from
method : which direction for drawing sample ie forward or backward
------------------------------------------------------------------------------------------------------------------------------------------
REMARK : If FORWARD then samples for HIDDEN layer (BERNOULLI)
If BACKWARD then samples for VISIBLE layer (BERNOULLI OR GAUSSIAN if self.gaussian_unit = True)"""
if self.gaussian_unit and method == 'backward':
'In this case mean_activation is the mean of the normal distribution, variance being self.variance^2'
mu = tf.reshape(mean_activation, [-1])
dist = tf.contrib.distributions.MultivariateNormalDiag(mu, self.sigma)
samples = dist.sample()
return tf.reshape(samples,[self.batch_size,self.visible_height,self.visible_width,self.visible_channels])
elif method == 'forward':
height = self.hidden_height
width = self.hidden_width
channels = self.filter_number
elif method == 'backward':
height = self.visible_height
width = self.visible_width
channels = self.visible_channels
return tf.select(tf.random_uniform([self.batch_size,height,width,channels]) - mean_activation < 0, tf.ones([self.batch_size,height,width,channels]), tf.zeros([self.batch_size,height,width,channels]))
示例12: sample_from_discretized_mix_logistic
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import select [as 别名]
def sample_from_discretized_mix_logistic(l,nr_mix,seed=None):
ls = int_shape(l)
xs = ls[:-1] + [3]
# unpack parameters
logit_probs = l[:, :, :, :nr_mix]
l = tf.reshape(l[:, :, :, nr_mix:], xs + [nr_mix*3])
# sample mixture indicator from softmax
sel = tf.one_hot(tf.argmax(logit_probs - tf.log(-tf.log(tf.random_uniform(logit_probs.get_shape(), minval=1e-5, maxval=1. - 1e-5, seed=seed))), 3), depth=nr_mix, dtype=tf.float32)
sel = tf.reshape(sel, xs[:-1] + [1,nr_mix])
# select logistic parameters
means = tf.reduce_sum(l[:,:,:,:,:nr_mix]*sel,4)
log_scales = tf.maximum(tf.reduce_sum(l[:,:,:,:,nr_mix:2*nr_mix]*sel,4), -7.)
coeffs = tf.reduce_sum(tf.nn.tanh(l[:,:,:,:,2*nr_mix:3*nr_mix])*sel,4)
# sample from logistic & clip to interval
# we don't actually round to the nearest 8bit value when sampling
u = tf.random_uniform(means.get_shape(), minval=1e-5, maxval=1. - 1e-5, seed=(seed + 1 if seed is not None else None))
x = means + tf.exp(log_scales)*(tf.log(u) - tf.log(1. - u))
x0 = tf.minimum(tf.maximum(x[:,:,:,0], -1.), 1.)
x1 = tf.minimum(tf.maximum(x[:,:,:,1] + coeffs[:,:,:,0]*x0, -1.), 1.)
x2 = tf.minimum(tf.maximum(x[:,:,:,2] + coeffs[:,:,:,1]*x0 + coeffs[:,:,:,2]*x1, -1.), 1.)
return tf.concat([tf.reshape(x0,xs[:-1]+[1]), tf.reshape(x1,xs[:-1]+[1]), tf.reshape(x2,xs[:-1]+[1])], 3)
示例13: smooth_l1
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import select [as 别名]
def smooth_l1(x):
x = tf.abs(x)
x = tf.select(
tf.less(x, 1),
tf.mul(tf.square(x), 0.5),
tf.sub(x, 0.5)
)
x = tf.reshape(x, shape=[-1, 4])
x = tf.reduce_sum(x, 1)
return x
示例14: huber_loss
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import select [as 别名]
def huber_loss(x, delta=1.0):
# https://en.wikipedia.org/wiki/Huber_loss
return tf.select(
tf.abs(x) < delta,
tf.square(x) * 0.5,
delta * (tf.abs(x) - 0.5 * delta)
)
示例15: set_logp_to_neg_inf
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import select [as 别名]
def set_logp_to_neg_inf(X, logp, bounds):
"""Set `logp` to negative infinity when `X` is outside the allowed bounds.
# Arguments
X: tensorflow.Tensor
The variable to apply the bounds to
logp: tensorflow.Tensor
The log probability corrosponding to `X`
bounds: list of `Region` objects
The regions corrosponding to allowed regions of `X`
# Returns
logp: tensorflow.Tensor
The newly bounded log probability
"""
conditions = []
for l, u in bounds:
lower_is_neg_inf = not isinstance(l, tf.Tensor) and np.isneginf(l)
upper_is_pos_inf = not isinstance(u, tf.Tensor) and np.isposinf(u)
if not lower_is_neg_inf and upper_is_pos_inf:
conditions.append(tf.greater(X, l))
elif lower_is_neg_inf and not upper_is_pos_inf:
conditions.append(tf.less(X, u))
elif not (lower_is_neg_inf or upper_is_pos_inf):
conditions.append(tf.logical_and(tf.greater(X, l), tf.less(X, u)))
if len(conditions) > 0:
is_inside_bounds = conditions[0]
for condition in conditions[1:]:
is_inside_bounds = tf.logical_or(is_inside_bounds, condition)
logp = tf.select(
is_inside_bounds,
logp,
tf.fill(tf.shape(X), config.dtype(-np.inf))
)
return logp