本文整理汇总了Python中tensorflow.segment_mean方法的典型用法代码示例。如果您正苦于以下问题:Python tensorflow.segment_mean方法的具体用法?Python tensorflow.segment_mean怎么用?Python tensorflow.segment_mean使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow
的用法示例。
在下文中一共展示了tensorflow.segment_mean方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: testGradient
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import segment_mean [as 别名]
def testGradient(self):
shape = [4, 4]
indices = [0, 1, 2, 2]
for tf_op in [tf.segment_sum,
tf.segment_mean,
tf.segment_min,
tf.segment_max]:
with self.test_session():
tf_x, np_x = self._input(shape, dtype=tf.float64)
s = tf_op(data=tf_x, segment_ids=indices)
jacob_t, jacob_n = tf.test.compute_gradient(
tf_x,
shape,
s,
[3, 4],
x_init_value=np_x.astype(np.double),
delta=1)
self.assertAllClose(jacob_t, jacob_n, rtol=1e-3, atol=1e-3)
示例2: padded_segment_reduce
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import segment_mean [as 别名]
def padded_segment_reduce(vecs, segment_inds, num_segments, reduction_mode):
"""
Reduce the vecs with segment_inds and reduction_mode
Input:
vecs: A Tensor of shape (batch_size, vec_dim)
segment_inds: A Tensor containing the segment index of each
vec row, should agree with vecs in shape[0]
Output:
A tensor of shape (vec_dim)
"""
if reduction_mode == 'max':
print('USING MAX POOLING FOR REDUCTION!')
vecs_reduced = tf.segment_max(vecs, segment_inds)
elif reduction_mode == 'mean':
print('USING AVG POOLING FOR REDUCTION!')
vecs_reduced = tf.segment_mean(vecs, segment_inds)
vecs_reduced.set_shape([num_segments, vecs.get_shape()[1]])
return vecs_reduced
示例3: test_SegmentMean
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import segment_mean [as 别名]
def test_SegmentMean(self):
t = tf.segment_mean(self.random(4, 2, 3), np.array([0, 1, 1, 2]))
self.check(t)
示例4: testValues
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import segment_mean [as 别名]
def testValues(self):
dtypes = [tf.float32,
tf.float64,
tf.int64,
tf.int32,
tf.complex64,
tf.complex128]
# Each item is np_op1, np_op2, tf_op
ops_list = [(np.add, None, tf.segment_sum),
(self._mean_cum_op, self._mean_reduce_op,
tf.segment_mean),
(np.ndarray.__mul__, None, tf.segment_prod),
(np.minimum, None, tf.segment_min),
(np.maximum, None, tf.segment_max)]
# A subset of ops has been enabled for complex numbers
complex_ops_list = [(np.add, None, tf.segment_sum),
(np.ndarray.__mul__, None, tf.segment_prod)]
n = 10
shape = [n, 2]
indices = [i // 3 for i in range(n)]
for dtype in dtypes:
if dtype in (tf.complex64, tf.complex128):
curr_ops_list = complex_ops_list
else:
curr_ops_list = ops_list
with self.test_session(use_gpu=False):
tf_x, np_x = self._input(shape, dtype=dtype)
for np_op1, np_op2, tf_op in curr_ops_list:
np_ans = self._segmentReduce(indices, np_x, np_op1, np_op2)
s = tf_op(data=tf_x, segment_ids=indices)
tf_ans = s.eval()
self._assertAllClose(indices, np_ans, tf_ans)
# NOTE(mrry): The static shape inference that computes
# `tf_ans.shape` can only infer that sizes from dimension 1
# onwards, because the size of dimension 0 is data-dependent
# and may therefore vary dynamically.
self.assertAllEqual(np_ans.shape[1:], tf_ans.shape[1:])
示例5: __init__
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import segment_mean [as 别名]
def __init__(self, mode='sum', name=None):
if mode == 'sum':
self._reduce = tf.segment_sum
elif mode == 'mean':
self._reduce = tf.segment_mean
super(PoolSegments, self).__init__(name)
示例6: _segments_1d
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import segment_mean [as 别名]
def _segments_1d(values, mode, name=None):
"""Labels consecutive runs of the same value.
Args:
values: 1D tensor of any type.
mode: The SegmentsMode. Returns the start of each segment (STARTS), or the
rounded center of each segment (CENTERS).
name: Optional name for the op.
Returns:
run_centers: int32 tensor; the centers of each run with the same consecutive
values.
run_lengths: int32 tensor; the lengths of each run.
Raises:
ValueError: if mode is not recognized.
"""
with tf.name_scope(name, "segments", [values]):
def do_segments(values):
"""Actually does segmentation.
Args:
values: 1D tensor of any type. Non-empty.
Returns:
run_centers: int32 tensor
run_lengths: int32 tensor
Raises:
ValueError: if mode is not recognized.
"""
length = tf.shape(values)[0]
values = tf.convert_to_tensor(values)
# The first run has id 0, so we don't increment the id.
# Otherwise, the id is incremented when the value changes.
run_start_bool = tf.concat(
[[False], tf.not_equal(values[1:], values[:-1])], axis=0)
# Cumulative sum the run starts to get the run ids.
segment_ids = tf.cumsum(tf.cast(run_start_bool, tf.int32))
if mode is SegmentsMode.STARTS:
run_centers = tf.segment_min(tf.range(length), segment_ids)
elif mode is SegmentsMode.CENTERS:
run_centers = tf.segment_mean(
tf.cast(tf.range(length), tf.float32), segment_ids)
run_centers = tf.cast(tf.floor(run_centers), tf.int32)
else:
raise ValueError("Unexpected mode: %s" % mode)
run_lengths = tf.segment_sum(tf.ones([length], tf.int32), segment_ids)
return run_centers, run_lengths
def empty_segments():
return (tf.zeros([0], tf.int32), tf.zeros([0], tf.int32))
return tf.cond(
tf.greater(tf.shape(values)[0], 0), lambda: do_segments(values),
empty_segments)