当前位置: 首页>>代码示例>>Python>>正文


Python tensorflow.scatter_sub方法代码示例

本文整理汇总了Python中tensorflow.scatter_sub方法的典型用法代码示例。如果您正苦于以下问题:Python tensorflow.scatter_sub方法的具体用法?Python tensorflow.scatter_sub怎么用?Python tensorflow.scatter_sub使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.scatter_sub方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: center_loss

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import scatter_sub [as 别名]
def center_loss(features, label, alfa, nrof_classes):
    """Center loss based on the paper
       "A Discriminative Feature Learning Approach for Deep Face Recognition"
       (http://ydwen.github.io/papers/WenECCV16.pdf)
    """

    logger.info(msg="center_loss called")
    nrof_features = features.get_shape()[1]
    centers = tf.get_variable('centers', [nrof_classes, nrof_features],
                              dtype=tf.float32,
                              initializer=tf.constant_initializer(0),
                              trainable=False)
    label = tf.reshape(label, [-1])
    centers_batch = tf.gather(centers, label)
    diff = (1 - alfa) * (centers_batch - features)
    centers = tf.scatter_sub(centers, label, diff)
    with tf.control_dependencies([centers]):
        loss = tf.reduce_mean(tf.square(features - centers_batch))
    return loss, centers 
开发者ID:pymit,项目名称:Rekognition,代码行数:21,代码来源:facenet.py

示例2: center_loss

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import scatter_sub [as 别名]
def center_loss(features, labels, num_classes, alpha=0.99, weight=1.0):
  """Center loss based on the paper "A Discriminative Feature Learning Approach for Deep Face Recognition"
     (http://ydwen.github.io/papers/WenECCV16.pdf)
  """
  num_features = features.get_shape()[1]
  centers = tf.get_variable('centers', [num_classes, num_features], dtype=tf.float32,
                            initializer=tf.constant_initializer(0), trainable=False)
  labels = tf.reshape(labels, [-1])
  centers_batch = tf.gather(centers, labels)
  diffs = (1 - alpha) * (centers_batch - features)
  centers = tf.scatter_sub(centers, labels, diffs)
  
  center_loss_mean = tf.reduce_mean(tf.square(features - centers_batch))

  tf.add_to_collection('losses', weight*center_loss_mean)
  
  return center_loss_mean, centers 
开发者ID:medivhna,项目名称:TF_Face_Toolbox,代码行数:19,代码来源:loss.py

示例3: center_loss

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import scatter_sub [as 别名]
def center_loss(embedding, label, num_classes, alpha=0.1, scope="center_loss"):
    r"""Center-Loss as described in the paper
    `A Discriminative Feature Learning Approach for Deep Face Recognition`
    <http://ydwen.github.io/papers/WenECCV16.pdf> by Wen et al.

    Args:
        embedding (tf.Tensor): features produced by the network
        label (tf.Tensor): ground-truth label for each feature
        num_classes (int): number of different classes
        alpha (float): learning rate for updating the centers

    Returns:
        tf.Tensor: center loss
    """
    nrof_features = embedding.get_shape()[1]
    centers = tf.get_variable('centers', [num_classes, nrof_features], dtype=tf.float32,
                              initializer=tf.constant_initializer(0), trainable=False)
    label = tf.reshape(label, [-1])
    centers_batch = tf.gather(centers, label)
    diff = (1 - alpha) * (centers_batch - embedding)
    centers = tf.scatter_sub(centers, label, diff)
    loss = tf.reduce_mean(tf.square(embedding - centers_batch), name=scope)
    return loss 
开发者ID:tensorpack,项目名称:tensorpack,代码行数:25,代码来源:mnist-embeddings.py

示例4: center_loss

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import scatter_sub [as 别名]
def center_loss(features, label, alfa, nrof_classes):
    """Center loss based on the paper "A Discriminative Feature Learning Approach for Deep Face Recognition"
       (http://ydwen.github.io/papers/WenECCV16.pdf)
    """
    nrof_features = features.get_shape()[1]
    centers = tf.get_variable('centers', [nrof_classes, nrof_features], dtype=tf.float32,
        initializer=tf.constant_initializer(0), trainable=False)
    label = tf.reshape(label, [-1])
    centers_batch = tf.gather(centers, label)
    diff = (1 - alfa) * (centers_batch - features)
    centers = tf.scatter_sub(centers, label, diff)
    with tf.control_dependencies([centers]):
        loss = tf.reduce_mean(tf.square(features - centers_batch))
    return loss, centers 
开发者ID:GaoangW,项目名称:TNT,代码行数:16,代码来源:facenet.py

示例5: center_loss_v2

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import scatter_sub [as 别名]
def center_loss_v2(config, features, labels, centers=None, **kargs):
	alpha = config.alpha
	num_classes = config.num_classes
	with tf.variable_scope(config.scope+"_center_loss"):
		print("==center loss==")
		len_features = features.get_shape()[1]
		if not centers:
			centers = tf.get_variable('centers', 
							[num_classes, len_features], 
							dtype=tf.float32,
							initializer=tf.contrib.layers.xavier_initializer(),
							trainable=False)
			print("==add center parameters==")
	 
		centers_batch = tf.gather(centers, labels)

		loss = tf.nn.l2_loss(features - centers_batch)
	 
		diff = centers_batch - features
	 
		unique_label, unique_idx, unique_count = tf.unique_with_counts(labels)
		appear_times = tf.gather(unique_count, unique_idx)
		appear_times = tf.reshape(appear_times, [-1, 1])
	 
		diff = diff / tf.cast((1 + appear_times), tf.float32)
		diff = alpha * diff

		centers_update_op = tf.scatter_sub(centers, labels, diff)

		tf.add_to_collection(tf.GraphKeys.UPDATE_OPS, centers_update_op)
		
		return loss, centers 
开发者ID:yyht,项目名称:BERT,代码行数:34,代码来源:loss_utils.py

示例6: minimize

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import scatter_sub [as 别名]
def minimize(self, loss, variables=None):
    """"""
    
    variables = variables or tf.trainable_variables()
    gradients = tf.gradients(loss, variables,
                             colocate_gradients_with_ops=True,
                             gate_gradients=True,
                             aggregation_method=2)
    gradients = {variable: gradient for variable, gradient in zip(variables, gradients) if gradient is not None}
    
    variable_steps = {}
    variable_indices = {}
    updates = [tf.assign_add(self.global_step, 1)]
    for variable, gradient in six.iteritems(gradients):
      if isinstance(gradient, tf.Tensor):
        step, update = self.dense_update(gradient, variable)
        variable_steps[variable] = step
        updates.extend(update)
      else:
        step, indices, update = self.sparse_update(gradient, variable)
        variable_steps[variable] = step
        variable_indices[variable] = indices
        updates.extend(update)
    
    variable_steps = self.clip_by_global_norm(variable_steps)
    
    for variable, step in six.iteritems(variable_steps):
      if variable in variable_indices:
        indices = variable_indices[variable]
        updates.append(tf.scatter_sub(variable, indices, step))
      else:
        updates.append(tf.assign_sub(variable, step))
    
    return tf.tuple(updates)[0]
  
  #============================================================= 
开发者ID:tdozat,项目名称:Parser-v3,代码行数:38,代码来源:optimizer.py

示例7: center_loss

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import scatter_sub [as 别名]
def center_loss(features, label, alfa, nrof_classes):
    """Center loss based on the paper "A Discriminative Feature Learning Approach for Deep Face Recognition"
       (http://ydwen.github.io/papers/WenECCV16.pdf)
    """
    nrof_features = features.get_shape()[1]
    centers = tf.get_variable('centers', [nrof_classes, nrof_features], dtype=tf.float32,
        initializer=tf.constant_initializer(0), trainable=False)
    label = tf.reshape(label, [-1])
    centers_batch = tf.gather(centers, label)
    diff = (1 - alfa) * (centers_batch - features)
    centers = tf.scatter_sub(centers, label, diff)
    loss = tf.reduce_mean(tf.square(features - centers_batch))
    return loss, centers 
开发者ID:bearsprogrammer,项目名称:real-time-deep-face-recognition,代码行数:15,代码来源:facenet.py

示例8: testSubRandom

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import scatter_sub [as 别名]
def testSubRandom(self):
    # Random shapes of rank 4, random indices
    for _ in range(5):
      shape = np.random.randint(1, 20, size=4)
      indices = np.random.randint(shape[0], size=2 * shape[0])
      self._TestCase(_AsLong(list(shape)), list(indices),
                     tf.scatter_sub) 
开发者ID:tobegit3hub,项目名称:deep_image_model,代码行数:9,代码来源:embedding_ops_test.py

示例9: testVariableRankSub

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import scatter_sub [as 别名]
def testVariableRankSub(self):
    self._VariableRankTests(tf.scatter_sub) 
开发者ID:tobegit3hub,项目名称:deep_image_model,代码行数:4,代码来源:scatter_ops_test.py

示例10: testRepeatIndicesSub

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import scatter_sub [as 别名]
def testRepeatIndicesSub(self):
    self._VariableRankTests(tf.scatter_sub, True) 
开发者ID:tobegit3hub,项目名称:deep_image_model,代码行数:4,代码来源:scatter_ops_test.py

示例11: center_loss

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import scatter_sub [as 别名]
def center_loss(self, features, label, alpha, num_classes):
    """Center loss based on the paper "A Discriminative Feature Learning Approach for Deep Face Recognition"
       (http://ydwen.github.io/papers/WenECCV16.pdf)
       copy from facenet: https://github.com/davidsandberg/facenet
    """
    num_features = features.get_shape()[1]
    centers = tf.get_variable('centers', [num_classes, num_features], dtype=tf.float32,
        initializer=tf.constant_initializer(0), trainable=False)
    label = tf.reshape(label, [-1])
    centers_batch = tf.gather(centers, label)
    diff = (1 - alpha) * (centers_batch - features)
    centers = tf.scatter_sub(centers, label, diff)
    with tf.control_dependencies([centers]):
      loss = tf.reduce_mean(tf.square(features - centers_batch))
    return loss, centers 
开发者ID:rockyzhengwu,项目名称:document-ocr,代码行数:17,代码来源:densenet.py

示例12: get_center_loss

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import scatter_sub [as 别名]
def get_center_loss(features, labels, alpha, num_classes):
    """
    Arguments:
        features: Tensor,shape [batch_size, feature_length].
        labels: Tensor,shape [batch_size].#not the one hot label
        alpha:  center upgrade learning rate
        num_classes: how many classes. 
    
    Return:
        loss: Tensor,
        centers: Tensor
        centers_update_op:
    """
    len_features = features.get_shape()[1]
    centers = tf.get_variable('centers', [num_classes, len_features], dtype=tf.float32,
        initializer=tf.constant_initializer(0), trainable=False)
    labels = tf.reshape(labels, [-1])
    centers_batch = tf.gather(centers, labels)
    loss = tf.nn.l2_loss(features - centers_batch)
    diff = centers_batch - features
    unique_label, unique_idx, unique_count = tf.unique_with_counts(labels)
    appear_times = tf.gather(unique_count, unique_idx)
    appear_times = tf.reshape(appear_times, [-1, 1])
    diff = diff / tf.cast((1 + appear_times), tf.float32)
    diff = alpha * diff
    centers_update_op = tf.scatter_sub(centers, labels, diff)
    # need to update after every epoch, the key is to update the center of the classes. 

    return loss, centers, centers_update_op 
开发者ID:xulabs,项目名称:aitom,代码行数:31,代码来源:train_double.py

示例13: update_intra_anchor

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import scatter_sub [as 别名]
def update_intra_anchor(intra_anchors, intra_anchors_n, features_cam, labels_cam):
    # update intra-anchor for each camera
    for i in range(FLAGS.num_cams):
        # compute the difference between old anchors and the new given data
        diff = tf.gather(intra_anchors_n[i], labels_cam[i]) - features_cam[i]
        # update the intra-anchors under each camera
        intra_anchors[i] = tf.scatter_sub(intra_anchors[i], labels_cam[i], FLAGS.eta * diff)

    return intra_anchors 
开发者ID:yanbeic,项目名称:Deep-Association-Learning,代码行数:11,代码来源:association.py

示例14: center_loss

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import scatter_sub [as 别名]
def center_loss(features, labels, num_classes, alpha=0.5, updates_collections=tf.GraphKeys.UPDATE_OPS, scope=None):
    # modified from https://github.com/EncodeTS/TensorFlow_Center_Loss/blob/master/center_loss.py

    assert features.shape.ndims == 2, 'The rank of `features` should be 2!'
    assert 0 <= alpha <= 1, '`alpha` should be in [0, 1]!'

    with tf.variable_scope(scope, 'center_loss', [features, labels]):
        centers = tf.get_variable('centers', shape=[num_classes, features.get_shape()[-1]], dtype=tf.float32,
                                  initializer=tf.constant_initializer(0), trainable=False)

        centers_batch = tf.gather(centers, labels)
        diff = centers_batch - features
        _, unique_idx, unique_count = tf.unique_with_counts(labels)
        appear_times = tf.gather(unique_count, unique_idx)
        appear_times = tf.reshape(appear_times, [-1, 1])
        diff = diff / tf.cast((1 + appear_times), tf.float32)
        diff = alpha * diff
        update_centers = tf.scatter_sub(centers, labels, diff)

        center_loss = 0.5 * tf.reduce_mean(tf.reduce_sum((centers_batch - features)**2, axis=-1))

        if updates_collections is None:
            with tf.control_dependencies([update_centers]):
                center_loss = tf.identity(center_loss)
        else:
            tf.add_to_collections(updates_collections, update_centers)

    return center_loss, centers 
开发者ID:LynnHo,项目名称:AttGAN-Tensorflow,代码行数:30,代码来源:losses.py

示例15: get_git_loss

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import scatter_sub [as 别名]
def get_git_loss(features, labels, num_classes):
    len_features = features.get_shape()[1]
    centers = tf.get_variable('centers', [num_classes, len_features], dtype=tf.float32,
                              initializer=tf.constant_initializer(0), trainable=False)
    labels = tf.reshape(labels, [-1])
    centers_batch = tf.gather(centers, labels)

    loss = tf.reduce_mean(tf.square(features - centers_batch))

    # Pairwise differences
    diffs = (features[:, tf.newaxis] - centers_batch[tf.newaxis, :])
    diffs_shape = tf.shape(diffs)

    # Mask diagonal (where i == j)
    mask = 1 - tf.eye(diffs_shape[0], diffs_shape[1], dtype=diffs.dtype)
    diffs = diffs * mask[:, :, tf.newaxis]

    # combinaton of two losses
    loss2 = tf.reduce_mean(tf.divide(1, 1 + tf.square(diffs)))

    diff = centers_batch - features
    unique_label, unique_idx, unique_count = tf.unique_with_counts(labels)
    appear_times = tf.gather(unique_count, unique_idx)
    appear_times = tf.reshape(appear_times, [-1, 1])

    diff = tf.divide(diff, tf.cast((1 + appear_times), tf.float32))
    diff = CENTER_LOSS_ALPHA * diff

    centers_update_op = tf.scatter_sub(centers, labels, diff)  # diff is used to get updated centers.

    # combo_loss = value_factor * loss + new_factor * loss2
    combo_loss = FLAGS.lambda_c * loss + FLAGS.lambda_g * loss2

    return combo_loss, centers_update_op 
开发者ID:kjanjua26,项目名称:Git-Loss-For-Deep-Face-Recognition,代码行数:36,代码来源:gitloss.py


注:本文中的tensorflow.scatter_sub方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。