当前位置: 首页>>代码示例>>Python>>正文


Python tensorflow.round方法代码示例

本文整理汇总了Python中tensorflow.round方法的典型用法代码示例。如果您正苦于以下问题:Python tensorflow.round方法的具体用法?Python tensorflow.round怎么用?Python tensorflow.round使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.round方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: f1_score

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import round [as 别名]
def f1_score(y_true, y_pred):
	"""
	Compute the micro f(b) score with b=1.
	"""
	y_true = tf.cast(y_true, "float32")
	y_pred = tf.cast(tf.round(y_pred), "float32") # implicit 0.5 threshold via tf.round
	y_correct = y_true * y_pred


	sum_true = tf.reduce_sum(y_true, axis=1)
	sum_pred = tf.reduce_sum(y_pred, axis=1)
	sum_correct = tf.reduce_sum(y_correct, axis=1)


	precision = sum_correct / sum_pred
	recall = sum_correct / sum_true
	f_score = 2 * precision * recall / (precision + recall)
	f_score = tf.where(tf.is_nan(f_score), tf.zeros_like(f_score), f_score)


	return tf.reduce_mean(f_score) 
开发者ID:AlexGidiotis,项目名称:Document-Classifier-LSTM,代码行数:23,代码来源:classifier.py

示例2: _legacy_output_transform_func

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import round [as 别名]
def _legacy_output_transform_func(*expr, out_mul=1.0, out_add=0.0, out_shrink=1, out_dtype=None):
    if out_mul != 1.0:
        expr = [x * out_mul for x in expr]

    if out_add != 0.0:
        expr = [x + out_add for x in expr]

    if out_shrink > 1:
        ksize = [1, 1, out_shrink, out_shrink]
        expr = [tf.nn.avg_pool(x, ksize=ksize, strides=ksize, padding="VALID", data_format="NCHW") for x in expr]

    if out_dtype is not None:
        if tf.as_dtype(out_dtype).is_integer:
            expr = [tf.round(x) for x in expr]
        expr = [tf.saturate_cast(x, out_dtype) for x in expr]
    return expr 
开发者ID:produvia,项目名称:ai-platform,代码行数:18,代码来源:network.py

示例3: version_10

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import round [as 别名]
def version_10(cls, node, **kwargs):
    tensor_dict = kwargs["tensor_dict"]
    x = tensor_dict[node.inputs[0]]
    y_scale = tensor_dict[node.inputs[1]]

    x = tf.cast(x, tf.float32)
    y = tf.divide(x, y_scale)
    y = tf.round(y)
    if len(node.inputs) == 3:
      y_zero_point = tensor_dict[node.inputs[2]]
      y_dtype = y_zero_point.dtype
      y_zero_point = tf.cast(y_zero_point, tf.float32)
      y = tf.add(y, y_zero_point)
    else:  # y_zero_point default dtype = uint8
      y_dtype = tf.uint8

    y = tf.saturate_cast(y, y_dtype)

    return [y] 
开发者ID:onnx,项目名称:onnx-tensorflow,代码行数:21,代码来源:quantize_linear.py

示例4: pixels_from_softmax

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import round [as 别名]
def pixels_from_softmax(frame_logits, pure_sampling=False,
                        temperature=1.0, gumbel_noise_factor=0.2):
  """Given frame_logits from a per-pixel softmax, generate colors."""
  # If we're purely sampling, just sample each pixel.
  if pure_sampling or temperature == 0.0:
    return common_layers.sample_with_temperature(frame_logits, temperature)

  # Gumbel-sample from the pixel sofmax and average by pixel values.
  pixel_range = tf.to_float(tf.range(256))
  for _ in range(len(frame_logits.get_shape().as_list()) - 1):
    pixel_range = tf.expand_dims(pixel_range, axis=0)

  frame_logits = tf.nn.log_softmax(frame_logits)
  gumbel_samples = discretization.gumbel_sample(
      common_layers.shape_list(frame_logits)) * gumbel_noise_factor

  frame = tf.nn.softmax((frame_logits + gumbel_samples) / temperature, axis=-1)
  result = tf.reduce_sum(frame * pixel_range, axis=-1)
  # Round on the forward pass, not on the backward one.
  return result + tf.stop_gradient(tf.round(result) - result) 
开发者ID:yyht,项目名称:BERT,代码行数:22,代码来源:base.py

示例5: _bbox_to_mask

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import round [as 别名]
def _bbox_to_mask(yy, region_size, dtype):
    # trim bounding box exeeding region_size on top and left
    neg_part = tf.nn.relu(-yy[:2])
    core = tf.ones(tf.to_int32(tf.round(yy[2:] - neg_part)), dtype=dtype)

    y1 = tf.maximum(yy[0], 0.)
    x1 = tf.maximum(yy[1], 0.)

    y2 = tf.minimum(region_size[0], yy[0] + yy[2])
    x2 = tf.minimum(region_size[1], yy[1] + yy[3])

    padding = (y1, region_size[0] - y2, x1, region_size[1] - x2)
    padding = tf.reshape(tf.stack(padding), (-1, 2))
    padding = tf.to_int32(tf.round(padding))
    mask = tf.pad(core, padding)

    # trim bounding box exeeding region_size on bottom and right
    rs = tf.to_int32(tf.round(region_size))
    mask = mask[:rs[0], :rs[1]]
    mask.set_shape((None, None))
    return mask 
开发者ID:akosiorek,项目名称:hart,代码行数:23,代码来源:tensor_ops.py

示例6: quantizer

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import round [as 别名]
def quantizer(w, config, reuse=False, temperature=1, L=5, scope='image'):
        """
        Quantize feature map over L centers to obtain discrete $\hat{w}$
         + Centers: {-2,-1,0,1,2}
         + TODO:    Toggle learnable centers?
        """
        with tf.variable_scope('quantizer_{}'.format(scope, reuse=reuse)):

            centers = tf.cast(tf.range(-2,3), tf.float32)
            # Partition W into the Voronoi tesellation over the centers
            w_stack = tf.stack([w for _ in range(L)], axis=-1)
            w_hard = tf.cast(tf.argmin(tf.abs(w_stack - centers), axis=-1), tf.float32) + tf.reduce_min(centers)

            smx = tf.nn.softmax(-1.0/temperature * tf.abs(w_stack - centers), dim=-1)
            # Contract last dimension
            w_soft = tf.einsum('ijklm,m->ijkl', smx, centers)  # w_soft = tf.tensordot(smx, centers, axes=((-1),(0)))

            # Treat quantization as differentiable for optimization
            w_bar = tf.round(tf.stop_gradient(w_hard - w_soft) + w_soft)

            return w_bar 
开发者ID:Justin-Tan,项目名称:generative-compression,代码行数:23,代码来源:network.py

示例7: test_output_head_activations_work

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import round [as 别名]
def test_output_head_activations_work():
    """Tests that output head activations work properly"""
    nn_instance = NN(layers_info=[4, 7, 9, [5, 10, 3]], hidden_activations="relu",
                     output_activation=["softmax", None, "relu"])

    x = np.random.random((20, 2)) * -20.0
    out = nn_instance(x)

    assert out.shape == (20, 18)

    sums = tf.reduce_sum(out[:, :5], axis=1)
    sums_others = tf.reduce_sum(out[:, 5:], axis=1)
    sums_others_2 = tf.reduce_sum(out[:, 5:15], axis=1)
    sums_others_3 = tf.reduce_sum(out[:, 15:18], axis=1)


    for row in range(out.shape[0]):
        assert tf.math.equal(np.round(sums[row], 4), 1.0), sums[row]
        assert not tf.math.equal(np.round(sums_others[row], 4), 1.0), np.round(sums_others[row], 4)
        assert not tf.math.equal(np.round(sums_others_2[row], 4), 1.0), np.round(sums_others_2[row], 4)
        assert not tf.math.equal(np.round(sums_others_3[row], 4), 1.0), np.round(sums_others_3[row], 4)
        for col in range(3):
            assert out[row, 15 + col] >= 0.0, out[row, 15 + col] 
开发者ID:p-christ,项目名称:nn_builder,代码行数:25,代码来源:test_tf_NN.py

示例8: get_scheduled_sample_inputs

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import round [as 别名]
def get_scheduled_sample_inputs(
      self, done_warm_start, groundtruth_items, generated_items, batch_size):

    with tf.variable_scope("scheduled_sampling", reuse=tf.AUTO_REUSE):
      if self.hparams.mode != tf.estimator.ModeKeys.TRAIN:
        feedself = True
      else:
        # Scheduled sampling:
        # Calculate number of ground-truth frames to pass in.
        feedself = False
        iter_num = tf.train.get_global_step()
        # TODO(mbz): what should it be if it's undefined?
        if iter_num is None:
          iter_num = _LARGE_STEP_NUMBER
        k = self.hparams.scheduled_sampling_k
        num_ground_truth = tf.to_int32(
            tf.round(
                tf.to_float(batch_size) *
                (k / (k + tf.exp(tf.to_float(iter_num) / tf.to_float(k))))))

      if feedself and done_warm_start:
        # Feed in generated stuff.
        output_items = generated_items
      elif done_warm_start:
        output_items = []
        for item_gt, item_gen in zip(groundtruth_items, generated_items):
          # Scheduled sampling
          output_items.append(self.scheduled_sample(
              item_gt, item_gen, batch_size, num_ground_truth))
      else:
        # Feed in ground_truth
        output_items = groundtruth_items

      return output_items

  # TODO(mbz): use tf.distributions.kl_divergence instead. 
开发者ID:akzaidi,项目名称:fine-lm,代码行数:38,代码来源:next_frame.py

示例9: mode

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import round [as 别名]
def mode(self):
        return tf.round(self.ps) 
开发者ID:Hwhitetooth,项目名称:lirpg,代码行数:4,代码来源:distributions.py

示例10: _compute_new_static_size

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import round [as 别名]
def _compute_new_static_size(image, min_dimension, max_dimension):
  """Compute new static shape for resize_to_range method."""
  image_shape = image.get_shape().as_list()
  orig_height = image_shape[0]
  orig_width = image_shape[1]
  num_channels = image_shape[2]
  orig_min_dim = min(orig_height, orig_width)
  # Calculates the larger of the possible sizes
  large_scale_factor = min_dimension / float(orig_min_dim)
  # Scaling orig_(height|width) by large_scale_factor will make the smaller
  # dimension equal to min_dimension, save for floating point rounding errors.
  # For reasonably-sized images, taking the nearest integer will reliably
  # eliminate this error.
  large_height = int(round(orig_height * large_scale_factor))
  large_width = int(round(orig_width * large_scale_factor))
  large_size = [large_height, large_width]
  if max_dimension:
    # Calculates the smaller of the possible sizes, use that if the larger
    # is too big.
    orig_max_dim = max(orig_height, orig_width)
    small_scale_factor = max_dimension / float(orig_max_dim)
    # Scaling orig_(height|width) by small_scale_factor will make the larger
    # dimension equal to max_dimension, save for floating point rounding
    # errors. For reasonably-sized images, taking the nearest integer will
    # reliably eliminate this error.
    small_height = int(round(orig_height * small_scale_factor))
    small_width = int(round(orig_width * small_scale_factor))
    small_size = [small_height, small_width]
    new_size = large_size
    if max(large_size) > max_dimension:
      new_size = small_size
  else:
    new_size = large_size
  return tf.constant(new_size + [num_channels]) 
开发者ID:ahmetozlu,项目名称:vehicle_counting_tensorflow,代码行数:36,代码来源:preprocessor.py

示例11: _compute_new_dynamic_size

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import round [as 别名]
def _compute_new_dynamic_size(image, min_dimension, max_dimension):
  """Compute new dynamic shape for resize_to_range method."""
  image_shape = tf.shape(image)
  orig_height = tf.to_float(image_shape[0])
  orig_width = tf.to_float(image_shape[1])
  num_channels = image_shape[2]
  orig_min_dim = tf.minimum(orig_height, orig_width)
  # Calculates the larger of the possible sizes
  min_dimension = tf.constant(min_dimension, dtype=tf.float32)
  large_scale_factor = min_dimension / orig_min_dim
  # Scaling orig_(height|width) by large_scale_factor will make the smaller
  # dimension equal to min_dimension, save for floating point rounding errors.
  # For reasonably-sized images, taking the nearest integer will reliably
  # eliminate this error.
  large_height = tf.to_int32(tf.round(orig_height * large_scale_factor))
  large_width = tf.to_int32(tf.round(orig_width * large_scale_factor))
  large_size = tf.stack([large_height, large_width])
  if max_dimension:
    # Calculates the smaller of the possible sizes, use that if the larger
    # is too big.
    orig_max_dim = tf.maximum(orig_height, orig_width)
    max_dimension = tf.constant(max_dimension, dtype=tf.float32)
    small_scale_factor = max_dimension / orig_max_dim
    # Scaling orig_(height|width) by small_scale_factor will make the larger
    # dimension equal to max_dimension, save for floating point rounding
    # errors. For reasonably-sized images, taking the nearest integer will
    # reliably eliminate this error.
    small_height = tf.to_int32(tf.round(orig_height * small_scale_factor))
    small_width = tf.to_int32(tf.round(orig_width * small_scale_factor))
    small_size = tf.stack([small_height, small_width])
    new_size = tf.cond(
        tf.to_float(tf.reduce_max(large_size)) > max_dimension,
        lambda: small_size, lambda: large_size)
  else:
    new_size = large_size
  return tf.stack(tf.unstack(new_size) + [num_channels]) 
开发者ID:ahmetozlu,项目名称:vehicle_counting_tensorflow,代码行数:38,代码来源:preprocessor.py

示例12: denorm_boxes_graph

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import round [as 别名]
def denorm_boxes_graph(boxes, shape):
    """Converts boxes from normalized coordinates to pixel coordinates.
    boxes: [..., (y1, x1, y2, x2)] in normalized coordinates
    shape: [..., (height, width)] in pixels
    Note: In pixel coordinates (y2, x2) is outside the box. But in normalized
    coordinates it's inside the box.
    Returns:
        [..., (y1, x1, y2, x2)] in pixel coordinates
    """
    h, w = tf.split(tf.cast(shape, tf.float32), 2)
    scale = tf.concat([h, w, h, w], axis=-1) - tf.constant(1.0)
    shift = tf.constant([0., 0., 1., 1.])
    return tf.cast(tf.round(tf.multiply(boxes, scale) + shift), tf.int32) 
开发者ID:dataiku,项目名称:dataiku-contrib,代码行数:15,代码来源:model.py

示例13: distance_tensor

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import round [as 别名]
def distance_tensor(self, X, Nbrs, boxsize, B, N, M, d):
    """Calculates distance tensor for batch of molecules.

    B = batch_size, N = max_num_atoms, M = max_num_neighbors, d = num_features

    Parameters
    ----------
    X: tf.Tensor of shape (B, N, d)
      Coordinates/features tensor.
    Nbrs: tf.Tensor of shape (B, N, M)
      Neighbor list tensor.
    boxsize: float or None
      Simulation box length [Angstrom].

    Returns
    -------
    D: tf.Tensor of shape (B, N, M, d)
      Coordinates/features distance tensor.
    """
    flat_neighbors = tf.reshape(Nbrs, [-1, N * M])
    neighbor_coords = tf.gather(X, flat_neighbors, batch_dims=-1, axis=1)
    neighbor_coords = tf.reshape(neighbor_coords, [-1, N, M, d])
    D = neighbor_coords - tf.expand_dims(X, 2)
    if boxsize is not None:
      boxsize = tf.reshape(boxsize, [1, 1, 1, d])
      D -= tf.round(D / boxsize) * boxsize
    return D 
开发者ID:deepchem,项目名称:deepchem,代码行数:29,代码来源:layers.py

示例14: _ratio_enum

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import round [as 别名]
def _ratio_enum(anchor, ratios):
    """
    Enumerate a set of anchors for each aspect ratio wrt an anchor.
    """

    w, h, x_ctr, y_ctr = _whctrs(anchor)
    size = w * h
    size_ratios = size / ratios
    ws = tf.round(tf.sqrt(size_ratios))
    hs = tf.round(ws * ratios)
    anchors = _mkanchors(ws, hs, x_ctr, y_ctr)
    return anchors 
开发者ID:taehoonlee,项目名称:tensornets,代码行数:14,代码来源:rpn_utils.py

示例15: __binary_accuracy

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import round [as 别名]
def __binary_accuracy(from_logits=False):
    """
    Calculate binary accuracy, ignoring the magic number

    :param from_logits: From logits space or not. If you want to use logits, please use from_logits=True
    :type from_logits: boolean
    :return: Function for Binary classification accuracy which matches Keras losses API
    :rtype: function
    :Returned Funtion Parameter:
            | **function(y_true, y_pred)**
            |   - **y_true** (*tf.Tensor*): Ground Truth
            |   - **y_pred** (*tf.Tensor*): Prediction
            |   Return (*tf.Tensor*): Binary Classification Accuracy
    :History: 2018-Jan-31 - Written - Henry Leung (University of Toronto)
    """

    # DO NOT correct y_true for magic number, just let it goes wrong and then times a correction terms
    def binary_accuracy_internal(y_true, y_pred):
        if from_logits:
            y_pred = tf.nn.sigmoid(y_pred)
        return tf.reduce_mean(tf.cast(tf.equal(y_true, tf.round(y_pred)), tf.float32), axis=-1) * magic_correction_term(
            y_true)

    if not from_logits:
        binary_accuracy_internal.__name__ = 'binary_accuracy'  # set the name to be displayed in TF/Keras log
    else:
        binary_accuracy_internal.__name__ = 'binary_accuracy_from_logits'  # set the name to be displayed in TF/Keras log

    return binary_accuracy_internal 
开发者ID:henrysky,项目名称:astroNN,代码行数:31,代码来源:losses.py


注:本文中的tensorflow.round方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。