当前位置: 首页>>代码示例>>Python>>正文


Python tensorflow.rint方法代码示例

本文整理汇总了Python中tensorflow.rint方法的典型用法代码示例。如果您正苦于以下问题:Python tensorflow.rint方法的具体用法?Python tensorflow.rint怎么用?Python tensorflow.rint使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.rint方法的11个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: build_accuracy

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import rint [as 别名]
def build_accuracy(logits, labels, mask, loss_type):
	mask = tf.cast(mask, tf.float32)
	if loss_type == 'contrastive_loss':
		temp_sim = tf.subtract(tf.ones_like(logits), tf.rint(logits), name="temp_sim") #auto threshold 0.5
		correct = tf.equal(
							tf.cast(temp_sim, tf.float32),
							tf.cast(labels, tf.float32)
		)
		accuracy = tf.reduce_sum(tf.cast(correct, tf.float32)*mask)/(1e-10+tf.reduce_sum(mask))
	elif loss_type == 'exponent_neg_manhattan_distance_mse':
		temp_sim = tf.rint(logits)
		correct = tf.equal(
							tf.cast(temp_sim, tf.float32),
							tf.cast(labels, tf.float32)
		)
		accuracy = tf.reduce_sum(tf.cast(correct, tf.float32)*mask)/(1e-10+tf.reduce_sum(mask))
	return accuracy 
开发者ID:yyht,项目名称:BERT,代码行数:19,代码来源:embed_cpc_task_v1.py

示例2: opencv_wrapper

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import rint [as 别名]
def opencv_wrapper(imgs, opencv_func, argv):
    ret_imgs = []
    imgs_copy = imgs

    if imgs.shape[3] == 1:
        imgs_copy = np.squeeze(imgs)

    for img in imgs_copy:
        img_uint8 = np.clip(np.rint(img * 255), 0, 255).astype(np.uint8)
        ret_img = opencv_func(*[img_uint8]+argv)
        if type(ret_img) == tuple:
            ret_img = ret_img[1]
        ret_img = ret_img.astype(np.float32) / 255.
        ret_imgs.append(ret_img)
    ret_imgs = np.stack(ret_imgs)

    if imgs.shape[3] == 1:
        ret_imgs = np.expand_dims(ret_imgs, axis=3)

    return ret_imgs


# Binary filters. 
开发者ID:mzweilin,项目名称:EvadeML-Zoo,代码行数:25,代码来源:squeeze.py

示例3: _smallest_size_at_least

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import rint [as 别名]
def _smallest_size_at_least(height, width, smallest_side):
    """Computes new shape with the smallest side equal to `smallest_side`.
    Computes new shape with the smallest side equal to `smallest_side` while
    preserving the original aspect ratio.
    Args:
    height: an int32 scalar tensor indicating the current height.
    width: an int32 scalar tensor indicating the current width.
    smallest_side: A python integer or scalar `Tensor` indicating the size of
      the smallest side after resize.
    Returns:
    new_height: an int32 scalar tensor indicating the new height.
    new_width: and int32 scalar tensor indicating the new width.
    """
    smallest_side = tf.convert_to_tensor(smallest_side, dtype=tf.int32)

    height = tf.to_float(height)
    width = tf.to_float(width)
    smallest_side = tf.to_float(smallest_side)

    scale = tf.cond(tf.greater(height, width),
                    lambda: smallest_side / width,
                    lambda: smallest_side / height)
    new_height = tf.to_int32(tf.rint(height * scale))
    new_width = tf.to_int32(tf.rint(width * scale))
    return new_height, new_width 
开发者ID:marco-willi,项目名称:camera-trap-classifier,代码行数:27,代码来源:image.py

示例4: __init__

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import rint [as 别名]
def __init__(
        self, sequence_length, vocab_size, embedding_size, hidden_units, l2_reg_lambda, batch_size, trainableEmbeddings):

        # Placeholders for input, output and dropout
        self.input_x1 = tf.placeholder(tf.int32, [None, sequence_length], name="input_x1")
        self.input_x2 = tf.placeholder(tf.int32, [None, sequence_length], name="input_x2")
        self.input_y = tf.placeholder(tf.float32, [None], name="input_y")
        self.dropout_keep_prob = tf.placeholder(tf.float32, name="dropout_keep_prob")

        # Keeping track of l2 regularization loss (optional)
        l2_loss = tf.constant(0.0, name="l2_loss")
          
        # Embedding layer
        with tf.name_scope("embedding"):
            self.W = tf.Variable(
                tf.constant(0.0, shape=[vocab_size, embedding_size]),
                trainable=trainableEmbeddings,name="W")
            self.embedded_words1 = tf.nn.embedding_lookup(self.W, self.input_x1)
            self.embedded_words2 = tf.nn.embedding_lookup(self.W, self.input_x2)
        print self.embedded_words1
        # Create a convolution + maxpool layer for each filter size
        with tf.name_scope("output"):
            self.out1=self.stackedRNN(self.embedded_words1, self.dropout_keep_prob, "side1", embedding_size, sequence_length, hidden_units)
            self.out2=self.stackedRNN(self.embedded_words2, self.dropout_keep_prob, "side2", embedding_size, sequence_length, hidden_units)
            self.distance = tf.sqrt(tf.reduce_sum(tf.square(tf.subtract(self.out1,self.out2)),1,keep_dims=True))
            self.distance = tf.div(self.distance, tf.add(tf.sqrt(tf.reduce_sum(tf.square(self.out1),1,keep_dims=True)),tf.sqrt(tf.reduce_sum(tf.square(self.out2),1,keep_dims=True))))
            self.distance = tf.reshape(self.distance, [-1], name="distance")
        with tf.name_scope("loss"):
            self.loss = self.contrastive_loss(self.input_y,self.distance, batch_size)
        #### Accuracy computation is outside of this class.
        with tf.name_scope("accuracy"):
            self.temp_sim = tf.subtract(tf.ones_like(self.distance),tf.rint(self.distance), name="temp_sim") #auto threshold 0.5
            correct_predictions = tf.equal(self.temp_sim, self.input_y)
            self.accuracy=tf.reduce_mean(tf.cast(correct_predictions, "float"), name="accuracy") 
开发者ID:dhwajraj,项目名称:deep-siamese-text-similarity,代码行数:36,代码来源:siamese_network_semantic.py

示例5: __init__

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import rint [as 别名]
def __init__(
        self, sequence_length, vocab_size, embedding_size, hidden_units, l2_reg_lambda, batch_size):

        # Placeholders for input, output and dropout
        self.input_x1 = tf.placeholder(tf.int32, [None, sequence_length], name="input_x1")
        self.input_x2 = tf.placeholder(tf.int32, [None, sequence_length], name="input_x2")
        self.input_y = tf.placeholder(tf.float32, [None], name="input_y")
        self.dropout_keep_prob = tf.placeholder(tf.float32, name="dropout_keep_prob")

        # Keeping track of l2 regularization loss (optional)
        l2_loss = tf.constant(0.0, name="l2_loss")
          
        # Embedding layer
        with tf.name_scope("embedding"):
            self.W = tf.Variable(
                tf.random_uniform([vocab_size, embedding_size], -1.0, 1.0),
                trainable=True,name="W")
            self.embedded_chars1 = tf.nn.embedding_lookup(self.W, self.input_x1)
            #self.embedded_chars_expanded1 = tf.expand_dims(self.embedded_chars1, -1)
            self.embedded_chars2 = tf.nn.embedding_lookup(self.W, self.input_x2)
            #self.embedded_chars_expanded2 = tf.expand_dims(self.embedded_chars2, -1)

        # Create a convolution + maxpool layer for each filter size
        with tf.name_scope("output"):
            self.out1=self.BiRNN(self.embedded_chars1, self.dropout_keep_prob, "side1", embedding_size, sequence_length, hidden_units)
            self.out2=self.BiRNN(self.embedded_chars2, self.dropout_keep_prob, "side2", embedding_size, sequence_length, hidden_units)
            self.distance = tf.sqrt(tf.reduce_sum(tf.square(tf.subtract(self.out1,self.out2)),1,keep_dims=True))
            self.distance = tf.div(self.distance, tf.add(tf.sqrt(tf.reduce_sum(tf.square(self.out1),1,keep_dims=True)),tf.sqrt(tf.reduce_sum(tf.square(self.out2),1,keep_dims=True))))
            self.distance = tf.reshape(self.distance, [-1], name="distance")
        with tf.name_scope("loss"):
            self.loss = self.contrastive_loss(self.input_y,self.distance, batch_size)
        #### Accuracy computation is outside of this class.
        with tf.name_scope("accuracy"):
            self.temp_sim = tf.subtract(tf.ones_like(self.distance),tf.rint(self.distance), name="temp_sim") #auto threshold 0.5
            correct_predictions = tf.equal(self.temp_sim, self.input_y)
            self.accuracy=tf.reduce_mean(tf.cast(correct_predictions, "float"), name="accuracy") 
开发者ID:dhwajraj,项目名称:deep-siamese-text-similarity,代码行数:38,代码来源:siamese_network.py

示例6: feature_squeeze

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import rint [as 别名]
def feature_squeeze(images, dataset='cifar'):
    # color depth reduction
    if dataset == 'cifar':
        npp = 2 ** 5
    elif dataset == 'mnist':
        npp = 2 ** 3

    npp_int = npp - 1
    images = images / 255.
    x_int = tf.rint(tf.multiply(images, npp_int))
    x_float = tf.div(x_int, npp_int)
    return median_filtering_2x2(x_float, dataset=dataset) 
开发者ID:ermongroup,项目名称:generative_adversary,代码行数:14,代码来源:adv_utils.py

示例7: build_accuracy

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import rint [as 别名]
def build_accuracy(logits, labels, mask):
	temp_sim = tf.rint(logits)
	correct = tf.equal(
						tf.cast(temp_sim, tf.float32),
						tf.cast(labels, tf.float32)
	)
	accuracy = tf.reduce_sum(tf.cast(correct, tf.float32)*mask)/(1e-10+tf.reduce_sum(mask))
	return accuracy 
开发者ID:yyht,项目名称:BERT,代码行数:10,代码来源:regression_task.py

示例8: quantize

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import rint [as 别名]
def quantize(x):
    abs_value = tf.abs(x)
    vmax = tf.reduce_max(abs_value)
    s = tf.divide(vmax, 127.)
    x = tf.divide(x, s)
    x = tf.rint(x)
    return x, s 
开发者ID:TianzhongSong,项目名称:Tensorflow-quantization-test,代码行数:9,代码来源:layers.py

示例9: reduce_precision_py

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import rint [as 别名]
def reduce_precision_py(x, npp):
    """
    Reduce the precision of image, the numpy version.
    :param x: a float tensor, which has been scaled to [0, 1].
    :param npp: number of possible values per pixel. E.g. it's 256 for 8-bit gray-scale image, and 2 for binarized image.
    :return: a tensor representing image(s) with lower precision.
    """
    # Note: 0 is a possible value too.
    npp_int = npp - 1
    x_int = np.rint(x * npp_int)
    x_float = x_int / npp_int
    return x_float 
开发者ID:mzweilin,项目名称:EvadeML-Zoo,代码行数:14,代码来源:squeeze.py

示例10: reduce_precision_tf

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import rint [as 别名]
def reduce_precision_tf(x, npp):
    """
    Reduce the precision of image, the tensorflow version.
    """
    npp_int = npp - 1
    x_int = tf.rint(tf.multiply(x, npp_int))
    x_float = tf.div(x_int, npp_int)
    return x_float 
开发者ID:mzweilin,项目名称:EvadeML-Zoo,代码行数:10,代码来源:squeeze.py

示例11: reduce_precision_np

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import rint [as 别名]
def reduce_precision_np(x, npp):
    """
    Reduce the precision of image, the numpy version.
    :param x: a float tensor, which has been scaled to [0, 1].
    :param npp: number of possible values per pixel. E.g. it's 256 for 8-bit gray-scale image, and 2 for binarized image.
    :return: a tensor representing image(s) with lower precision.
    """
    # Note: 0 is a possible value too.
    npp_int = npp - 1
    x_int = np.rint(x * npp_int)
    x_float = x_int / npp_int
    return x_float 
开发者ID:uvasrg,项目名称:FeatureSqueezing,代码行数:14,代码来源:squeeze.py


注:本文中的tensorflow.rint方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。