当前位置: 首页>>代码示例>>Python>>正文


Python tensorflow.regex_replace方法代码示例

本文整理汇总了Python中tensorflow.regex_replace方法的典型用法代码示例。如果您正苦于以下问题:Python tensorflow.regex_replace方法的具体用法?Python tensorflow.regex_replace怎么用?Python tensorflow.regex_replace使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.regex_replace方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: parse_raw_text

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import regex_replace [as 别名]
def parse_raw_text(sentence):
  """Splits text tensor by word to sparse sequence of tokens.

  Args:
    sentence: `tf.string`, with text record to split.

  Returns:
    Dictionary mapping feature name to tensors with the following entries
    `constants.TOKENS` mapping to a `SparseTensor` and
    `constants.SEQUENCE_LENGTH` mapping to a one-dimensional integer `Tensor`.

  """

  tokens = tf.regex_replace(sentence, _CHAR_TO_FILTER_OUT, ' ',
                            replace_global=True)
  sparse_sequence = tf.string_split(tokens)
  features = {
      constants.TOKENS: sparse_sequence,
      constants.SEQUENCE_LENGTH: get_sparse_tensor_size(sparse_sequence)
  }
  return features 
开发者ID:GoogleCloudPlatform,项目名称:professional-services,代码行数:23,代码来源:input_fn.py

示例2: provide_data

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import regex_replace [as 别名]
def provide_data(self):
        def decode(line):
            fields = tf.string_split([line], self.field_delim).values
            if self.index:  # Skip index
                fields = fields[1:]
            fields = tf.regex_replace(fields, "|".join(self.na_values), "nan")
            fields = tf.string_to_number(fields, tf.float32)
            return fields

        def fill_na(fields, fill_values):
            fields = tf.where(tf.is_nan(fields), fill_values, fields)
            return fields

        dataset = tf.data.TextLineDataset(self.local_data_file)
        if self.header:  # Skip header
            dataset = dataset.skip(1)
        dataset = (
            dataset.map(decode)
            .map(lambda x: fill_na(x, self.data_schema.field_defaults))
            .repeat()
            .batch(self.batch_size)
        )

        iterator = dataset.make_one_shot_iterator()
        batch = iterator.get_next()
        batch = tf.reshape(batch, [self.batch_size, self.data_schema.field_num])
        return batch 
开发者ID:tf-encrypted,项目名称:tf-encrypted,代码行数:29,代码来源:logistic_regression.py

示例3: word_error_rate

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import regex_replace [as 别名]
def word_error_rate(raw_predictions,
                    labels,
                    lookup=None,
                    weights_fn=common_layers.weights_nonzero):
  """Calculate word error rate.

  Args:
    raw_predictions: The raw predictions.
    labels: The actual labels.
    lookup: A tf.constant mapping indices to output tokens.
    weights_fn: Weighting function.

  Returns:
    The word error rate.
  """

  def from_tokens(raw, lookup_):
    gathered = tf.gather(lookup_, tf.cast(raw, tf.int32))
    joined = tf.regex_replace(tf.reduce_join(gathered, axis=1), b"<EOS>.*", b"")
    cleaned = tf.regex_replace(joined, b"_", b" ")
    tokens = tf.string_split(cleaned, " ")
    return tokens

  def from_characters(raw, lookup_):
    """Convert ascii+2 encoded codes to string-tokens."""
    corrected = tf.bitcast(
        tf.clip_by_value(tf.subtract(raw, 2), 0, 255), tf.uint8)

    gathered = tf.gather(lookup_, tf.cast(corrected, tf.int32))[:, :, 0]
    joined = tf.reduce_join(gathered, axis=1)
    cleaned = tf.regex_replace(joined, b"\0", b"")
    tokens = tf.string_split(cleaned, " ")
    return tokens

  if lookup is None:
    lookup = tf.constant([chr(i) for i in range(256)])
    convert_fn = from_characters
  else:
    convert_fn = from_tokens

  if weights_fn is not common_layers.weights_nonzero:
    raise ValueError("Only weights_nonzero can be used for this metric.")

  with tf.variable_scope("word_error_rate", values=[raw_predictions, labels]):

    raw_predictions = tf.squeeze(
        tf.argmax(raw_predictions, axis=-1), axis=(2, 3))
    labels = tf.squeeze(labels, axis=(2, 3))

    reference = convert_fn(labels, lookup)
    predictions = convert_fn(raw_predictions, lookup)

    distance = tf.reduce_sum(
        tf.edit_distance(predictions, reference, normalize=False))
    reference_length = tf.cast(
        tf.size(reference.values, out_type=tf.int32), dtype=tf.float32)

    return distance / reference_length, reference_length 
开发者ID:yyht,项目名称:BERT,代码行数:60,代码来源:metrics.py


注:本文中的tensorflow.regex_replace方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。