当前位置: 首页>>代码示例>>Python>>正文


Python tensorflow.reduce_max方法代码示例

本文整理汇总了Python中tensorflow.reduce_max方法的典型用法代码示例。如果您正苦于以下问题:Python tensorflow.reduce_max方法的具体用法?Python tensorflow.reduce_max怎么用?Python tensorflow.reduce_max使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.reduce_max方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: from_float32_to_uint8

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import reduce_max [as 别名]
def from_float32_to_uint8(
        tensor,
        tensor_key='tensor',
        min_key='min',
        max_key='max'):
    """

    :param tensor:
    :param tensor_key:
    :param min_key:
    :param max_key:
    :returns:
    """
    tensor_min = tf.reduce_min(tensor)
    tensor_max = tf.reduce_max(tensor)
    return {
        tensor_key: tf.cast(
            (tensor - tensor_min) / (tensor_max - tensor_min + 1e-16)
            * 255.9999, dtype=tf.uint8),
        min_key: tensor_min,
        max_key: tensor_max
    } 
开发者ID:deezer,项目名称:spleeter,代码行数:24,代码来源:tensor.py

示例2: one_hot_encoding

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import reduce_max [as 别名]
def one_hot_encoding(labels, num_classes=None):
  """One-hot encodes the multiclass labels.

  Example usage:
    labels = tf.constant([1, 4], dtype=tf.int32)
    one_hot = OneHotEncoding(labels, num_classes=5)
    one_hot.eval()    # evaluates to [0, 1, 0, 0, 1]

  Args:
    labels: A tensor of shape [None] corresponding to the labels.
    num_classes: Number of classes in the dataset.
  Returns:
    onehot_labels: a tensor of shape [num_classes] corresponding to the one hot
      encoding of the labels.
  Raises:
    ValueError: if num_classes is not specified.
  """
  with tf.name_scope('OneHotEncoding', values=[labels]):
    if num_classes is None:
      raise ValueError('num_classes must be specified')

    labels = tf.one_hot(labels, num_classes, 1, 0)
    return tf.reduce_max(labels, 0) 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:25,代码来源:preprocessor.py

示例3: log_sum_exp

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import reduce_max [as 别名]
def log_sum_exp(x_k):
  """Computes log \sum exp in a numerically stable way.
    log ( sum_i exp(x_i) )
    log ( sum_i exp(x_i - m + m) ),       with m = max(x_i)
    log ( sum_i exp(x_i - m)*exp(m) )
    log ( sum_i exp(x_i - m) + m

  Args:
    x_k - k -dimensional list of arguments to log_sum_exp.

  Returns:
    log_sum_exp of the arguments.
  """
  m = tf.reduce_max(x_k)
  x1_k = x_k - m
  u_k = tf.exp(x1_k)
  z = tf.reduce_sum(u_k)
  return tf.log(z) + m 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:20,代码来源:utils.py

示例4: set_precision

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import reduce_max [as 别名]
def set_precision(predictions, labels,
                  weights_fn=common_layers.weights_nonzero):
  """Precision of set predictions.

  Args:
    predictions : A Tensor of scores of shape [batch, nlabels].
    labels: A Tensor of int32s giving true set elements,
      of shape [batch, seq_length].
    weights_fn: A function to weight the elements.

  Returns:
    hits: A Tensor of shape [batch, nlabels].
    weights: A Tensor of shape [batch, nlabels].
  """
  with tf.variable_scope("set_precision", values=[predictions, labels]):
    labels = tf.squeeze(labels, [2, 3])
    weights = weights_fn(labels)
    labels = tf.one_hot(labels, predictions.shape[-1])
    labels = tf.reduce_max(labels, axis=1)
    labels = tf.cast(labels, tf.bool)
    return tf.to_float(tf.equal(labels, predictions)), weights 
开发者ID:akzaidi,项目名称:fine-lm,代码行数:23,代码来源:metrics.py

示例5: set_recall

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import reduce_max [as 别名]
def set_recall(predictions, labels, weights_fn=common_layers.weights_nonzero):
  """Recall of set predictions.

  Args:
    predictions : A Tensor of scores of shape [batch, nlabels].
    labels: A Tensor of int32s giving true set elements,
      of shape [batch, seq_length].
    weights_fn: A function to weight the elements.

  Returns:
    hits: A Tensor of shape [batch, nlabels].
    weights: A Tensor of shape [batch, nlabels].
  """
  with tf.variable_scope("set_recall", values=[predictions, labels]):
    labels = tf.squeeze(labels, [2, 3])
    weights = weights_fn(labels)
    labels = tf.one_hot(labels, predictions.shape[-1])
    labels = tf.reduce_max(labels, axis=1)
    labels = tf.cast(labels, tf.bool)
    return tf.to_float(tf.equal(labels, predictions)), weights 
开发者ID:akzaidi,项目名称:fine-lm,代码行数:22,代码来源:metrics.py

示例6: top_1_tpu

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import reduce_max [as 别名]
def top_1_tpu(inputs):
  """find max and argmax over the last dimension.

  Works well on TPU

  Args:
    inputs: A tensor with shape [..., depth]

  Returns:
    values: a Tensor with shape [...]
    indices: a Tensor with shape [...]
  """
  inputs_max = tf.reduce_max(inputs, axis=-1, keepdims=True)
  mask = tf.to_int32(tf.equal(inputs_max, inputs))
  index = tf.range(tf.shape(inputs)[-1]) * mask
  return tf.squeeze(inputs_max, -1), tf.reduce_max(index, axis=-1) 
开发者ID:akzaidi,项目名称:fine-lm,代码行数:18,代码来源:common_layers.py

示例7: gumbel_softmax

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import reduce_max [as 别名]
def gumbel_softmax(logits, temperature, hard=False):
    """Sample from the Gumbel-Softmax distribution and optionally discretize.
    Args:
    logits: [batch_size, n_class] unnormalized log-probs
    temperature: non-negative scalar
    hard: if True, take argmax, but differentiate w.r.t. soft sample y
    Returns:
    [batch_size, n_class] sample from the Gumbel-Softmax distribution.
    If hard=True, then the returned sample will be one-hot, otherwise it will
    be a probabilitiy distribution that sums to 1 across classes
    """
    y = gumbel_softmax_sample(logits, temperature)
    if hard:
        # k = tf.shape(logits)[-1]
        # y_hard = tf.cast(tf.one_hot(tf.argmax(y, 1), k), y.dtype)
        y_hard = tf.cast(tf.equal(y, tf.reduce_max(y, 1, keep_dims=True)), y.dtype)
        y = tf.stop_gradient(y_hard - y) + y
    return y 
开发者ID:simonkamronn,项目名称:kvae,代码行数:20,代码来源:nn.py

示例8: add_variable_summaries

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import reduce_max [as 别名]
def add_variable_summaries(variable, scope):
  '''
  Attach some summaries to a tensor for TensorBoard visualization, namely
  mean, standard deviation, minimum, maximum, and histogram.

  Arguments:
    var (TensorFlow Variable): A TensorFlow Variable of any shape to which to
        add summary operations. Must be a numerical data type.
  '''
  with tf.name_scope(scope):
    mean = tf.reduce_mean(variable)
    tf.summary.scalar('mean', mean)
    with tf.name_scope('stddev'):
        stddev = tf.sqrt(tf.reduce_mean(tf.square(variable - mean)))
    tf.summary.scalar('stddev', stddev)
    tf.summary.scalar('max', tf.reduce_max(variable))
    tf.summary.scalar('min', tf.reduce_min(variable))
    tf.summary.histogram('histogram', variable) 
开发者ID:pierluigiferrari,项目名称:fcn8s_tensorflow,代码行数:20,代码来源:tf_variable_summaries.py

示例9: tower

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import reduce_max [as 别名]
def tower(image, mode, config):
        image = image_normalization(image)
        if image.shape[-1] == 1:
            image = tf.tile(image, [1, 1, 1, 3])

        with slim.arg_scope(resnet.resnet_arg_scope()):
            is_training = config['train_backbone'] and (mode == Mode.TRAIN)
            with slim.arg_scope([slim.conv2d, slim.batch_norm], trainable=is_training):
                _, encoder = resnet.resnet_v1_50(image,
                                                 is_training=is_training,
                                                 global_pool=False,
                                                 scope='resnet_v1_50')
        feature_map = encoder['resnet_v1_50/block3']

        if config['use_attention']:
            descriptor = delf_attention(feature_map, config, mode == Mode.TRAIN,
                                        resnet.resnet_arg_scope())
        else:
            descriptor = tf.reduce_max(feature_map, [1, 2])

        if config['dimensionality_reduction']:
            descriptor = dimensionality_reduction(descriptor, config)
        return descriptor 
开发者ID:ethz-asl,项目名称:hierarchical_loc,代码行数:25,代码来源:delf.py

示例10: call

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import reduce_max [as 别名]
def call(self, seq_value_len_list, mask=None, **kwargs):
        if self.supports_masking:
            if mask is None:
                raise ValueError(
                    "When supports_masking=True,input must support masking")
            uiseq_embed_list = seq_value_len_list
            mask = tf.to_float(mask)
            user_behavior_length = tf.reduce_sum(mask, axis=-1, keep_dims=True)
            mask = tf.expand_dims(mask, axis=2)
        else:
            uiseq_embed_list, user_behavior_length = seq_value_len_list

            mask = tf.sequence_mask(user_behavior_length,
                                    self.seq_len_max, dtype=tf.float32)
            mask = tf.transpose(mask, (0, 2, 1))

        embedding_size = uiseq_embed_list.shape[-1]

        mask = tf.tile(mask, [1, 1, embedding_size])

        uiseq_embed_list *= mask
        hist = uiseq_embed_list
        if self.mode == "max":
            return tf.reduce_max(hist, 1, keep_dims=True)

        hist = tf.reduce_sum(hist, 1, keep_dims=False)

        if self.mode == "mean":
            hist = tf.div(hist, user_behavior_length+self.eps)

        hist = tf.expand_dims(hist, axis=1)
        return hist 
开发者ID:ShenDezhou,项目名称:icme2019,代码行数:34,代码来源:sequence.py

示例11: get_or_guess_labels

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import reduce_max [as 别名]
def get_or_guess_labels(self, x, kwargs):
        """
        Get the label to use in generating an adversarial example for x.
        The kwargs are fed directly from the kwargs of the attack.
        If 'y' is in kwargs, then assume it's an untargeted attack and
        use that as the label.
        If 'y_target' is in kwargs and is not none, then assume it's a
        targeted attack and use that as the label.
        Otherwise, use the model's prediction as the label and perform an
        untargeted attack.
        """
        import tensorflow as tf

        if 'y' in kwargs and 'y_target' in kwargs:
            raise ValueError("Can not set both 'y' and 'y_target'.")
        elif 'y' in kwargs:
            labels = kwargs['y']
        elif 'y_target' in kwargs and kwargs['y_target'] is not None:
            labels = kwargs['y_target']
        else:
            preds = self.model.get_probs(x)
            preds_max = reduce_max(preds, 1, keepdims=True)
            original_predictions = tf.to_float(tf.equal(preds, preds_max))
            labels = tf.stop_gradient(original_predictions)
        if isinstance(labels, np.ndarray):
            nb_classes = labels.shape[1]
        else:
            nb_classes = labels.get_shape().as_list()[1]
        return labels, nb_classes 
开发者ID:StephanZheng,项目名称:neural-fingerprinting,代码行数:31,代码来源:attacks.py

示例12: fprop

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import reduce_max [as 别名]
def fprop(self, x, **kwargs):
        mean = tf.reduce_mean(x)
        std = tf.sqrt(tf.reduce_mean(tf.square(x - mean)))
        return tf.Print(x,
                        [tf.reduce_min(x), mean, tf.reduce_max(x), std],
                        "Print layer") 
开发者ID:StephanZheng,项目名称:neural-fingerprinting,代码行数:8,代码来源:picklable_model.py

示例13: reduce_max

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import reduce_max [as 别名]
def reduce_max(input_tensor, axis=None, keepdims=None,
               name=None, reduction_indices=None):
    """
    Wrapper around the tf.reduce_max to handle argument keep_dims
    """
    return reduce_function(tf.reduce_max, input_tensor, axis=axis,
                           keepdims=keepdims, name=name,
                           reduction_indices=reduction_indices) 
开发者ID:StephanZheng,项目名称:neural-fingerprinting,代码行数:10,代码来源:compat.py

示例14: spectrogram_to_db_uint

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import reduce_max [as 别名]
def spectrogram_to_db_uint(spectrogram, db_range=100., **kwargs):
    """ Encodes given spectrogram into uint8 using decibel scale.

    :param spectrogram: Spectrogram to be encoded as TF float tensor.
    :param db_range: Range in decibel for encoding.
    :returns: Encoded decibel spectrogram as uint8 tensor.
    """
    db_spectrogram = gain_to_db(spectrogram)
    max_db_spectrogram = tf.reduce_max(db_spectrogram)
    db_spectrogram = tf.maximum(db_spectrogram, max_db_spectrogram - db_range)
    return from_float32_to_uint8(db_spectrogram, **kwargs) 
开发者ID:deezer,项目名称:spleeter,代码行数:13,代码来源:convertor.py

示例15: variable_summaries

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import reduce_max [as 别名]
def variable_summaries(name,var, with_max_min=False):
  with tf.name_scope(name):
    mean = tf.reduce_mean(var)
    tf.summary.scalar('mean', mean)
    with tf.name_scope('stddev'):
      stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)))
    tf.summary.scalar('stddev', stddev)
    if with_max_min == True:
        tf.summary.scalar('max', tf.reduce_max(var))
        tf.summary.scalar('min', tf.reduce_min(var)) 
开发者ID:MichelDeudon,项目名称:neural-combinatorial-optimization-rl-tensorflow,代码行数:12,代码来源:actor.py


注:本文中的tensorflow.reduce_max方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。