本文整理汇总了Python中tensorflow.read_file方法的典型用法代码示例。如果您正苦于以下问题:Python tensorflow.read_file方法的具体用法?Python tensorflow.read_file怎么用?Python tensorflow.read_file使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow
的用法示例。
在下文中一共展示了tensorflow.read_file方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: preprocess
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import read_file [as 别名]
def preprocess(self, filename):
# Read examples from files in the filename queue.
file_content = tf.read_file(filename)
# Read JPEG or PNG or GIF image from file
reshaped_image = tf.to_float(tf.image.decode_jpeg(file_content, channels=self.raw_size[2]))
# Resize image to 256*256
reshaped_image = tf.image.resize_images(reshaped_image, (self.raw_size[0], self.raw_size[1]))
img_info = filename
if self.is_training:
reshaped_image = self._train_preprocess(reshaped_image)
else:
reshaped_image = self._test_preprocess(reshaped_image)
# Subtract off the mean and divide by the variance of the pixels.
reshaped_image = tf.image.per_image_standardization(reshaped_image)
# Set the shapes of tensors.
reshaped_image.set_shape(self.processed_size)
return reshaped_image
示例2: read_tensor_from_image_file
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import read_file [as 别名]
def read_tensor_from_image_file(frames, input_height=299, input_width=299, input_mean=0, input_std=255):
input_name = "file_reader"
frames = [(tf.read_file(frame, input_name), frame) for frame in frames]
decoded_frames = []
for frame in frames:
file_name = frame[1]
file_reader = frame[0]
if file_name.endswith(".png"):
image_reader = tf.image.decode_png(file_reader, channels=3, name="png_reader")
elif file_name.endswith(".gif"):
image_reader = tf.squeeze(tf.image.decode_gif(file_reader, name="gif_reader"))
elif file_name.endswith(".bmp"):
image_reader = tf.image.decode_bmp(file_reader, name="bmp_reader")
else:
image_reader = tf.image.decode_jpeg(file_reader, channels=3, name="jpeg_reader")
decoded_frames.append(image_reader)
float_caster = [tf.cast(image_reader, tf.float32) for image_reader in decoded_frames]
float_caster = tf.stack(float_caster)
resized = tf.image.resize_bilinear(float_caster, [input_height, input_width])
normalized = tf.divide(tf.subtract(resized, [input_mean]), [input_std])
sess = tf.Session()
result = sess.run(normalized)
return result
示例3: read_image_from_disc
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import read_file [as 别名]
def read_image_from_disc(image_path,shape=None,dtype=tf.uint8):
"""
Create a queue to hoold the paths of files to be loaded, then create meta op to read and decode image
Args:
image_path: metaop with path of the image to be loaded
shape: optional shape for the image
Returns:
meta_op with image_data
"""
image_raw = tf.read_file(image_path)
if dtype==tf.uint8:
image = tf.image.decode_image(image_raw)
else:
image = tf.image.decode_png(image_raw,dtype=dtype)
if shape is None:
image.set_shape([None,None,3])
else:
image.set_shape(shape)
return tf.cast(image, dtype=tf.float32)
示例4: parse_fn
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import read_file [as 别名]
def parse_fn(self, image_path, label_path):
"""Parse a single input sample
"""
image = tf.read_file(image_path)
image = tf.image.decode_png(image, channels=self.config.image_depth)
if self.config.mode == "infer":
image = tf.to_float(image)
image = vgg_preprocessing._mean_image_subtraction(image)
label = image[0]
return image, label
else:
label = tf.read_file(label_path)
label = tf.image.decode_png(label, channels=1)
label = tf.cast(label, dtype=tf.int64)
if self.augmenter:
is_training = (self.config.mode == "train")
return self.augmenter.augment(image, label,
self.config.output_height,
self.config.output_width,
self.config.resize_side_min,
self.config.resize_side_max,
is_training=is_training,
speed_mode=self.config.augmenter_speed_mode)
示例5: parse_fn
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import read_file [as 别名]
def parse_fn(self, image_path, label):
"""Parse a single input sample
"""
image = tf.read_file(image_path)
image = tf.image.decode_jpeg(image,
channels=self.config.image_depth,
dct_method="INTEGER_ACCURATE")
if self.augmenter:
is_training = (self.config.mode == "train")
image = self.augmenter.augment(
image,
self.config.image_height,
self.config.image_width,
is_training=is_training,
speed_mode=self.config.augmenter_speed_mode)
label = tf.one_hot(label, depth=self.config.num_classes)
return (image, label)
示例6: parse_fn
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import read_file [as 别名]
def parse_fn(self, image_path):
"""Parse a single input sample
"""
image = tf.read_file(image_path)
image = tf.image.decode_jpeg(image,
channels=self.config.image_depth,
dct_method="INTEGER_ACCURATE")
if self.config.mode == "infer":
image = tf.to_float(image)
image = vgg_preprocessing._mean_image_subtraction(image)
else:
if self.augmenter:
is_training = (self.config.mode == "train")
image = self.augmenter.augment(
image,
self.config.image_height,
self.config.image_width,
self.config.resize_side_min,
self.config.resize_side_max,
is_training=is_training,
speed_mode=self.config.augmenter_speed_mode)
return (image,)
示例7: parse_fn
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import read_file [as 别名]
def parse_fn(self, image_id, file_name, classes, boxes):
"""Parse a single input sample
"""
image = tf.read_file(file_name)
image = tf.image.decode_png(image, channels=3)
image = tf.to_float(image)
scale = [0, 0]
translation = [0, 0]
if self.augmenter:
is_training = (self.config.mode == "train")
image, classes, boxes, scale, translation = self.augmenter.augment(
image,
classes,
boxes,
self.config.resolution,
is_training=is_training,
speed_mode=False)
return ([image_id], image, classes, boxes, scale, translation, [file_name])
示例8: compute_style_feature
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import read_file [as 别名]
def compute_style_feature(self):
style_image = tf.read_file(self.config.style_image_path)
style_image = \
tf.image.decode_jpeg(style_image,
channels=self.config.image_depth,
dct_method="INTEGER_ACCURATE")
style_image = tf.to_float(style_image)
style_image = vgg_preprocessing._mean_image_subtraction(style_image)
style_image = tf.expand_dims(style_image, 0)
(logits, features), self.feature_net_init_flag = self.feature_net(
style_image, self.config.data_format,
is_training=False, init_flag=self.feature_net_init_flag,
ckpt_path=self.config.feature_net_path)
self.style_features_target_op = {}
for style_layer in self.style_layers:
layer = features[style_layer]
self.style_features_target_op[style_layer] = \
self.compute_gram(layer, self.config.data_format)
return self.style_features_target_op
示例9: _parse_function
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import read_file [as 别名]
def _parse_function(image, mask):
image_string = tf.read_file(image)
mask_string = tf.read_file(mask)
if image_type == 'jpg':
image_decoded = tf.image.decode_jpeg(image_string, 0)
mask_decoded = tf.image.decode_jpeg(mask_string, 1)
elif image_type == 'png':
image_decoded = tf.image.decode_png(image_string, 0)
mask_decoded = tf.image.decode_png(mask_string, 1)
elif image_type == 'bmp':
image_decoded = tf.image.decode_bmp(image_string, 0)
mask_decoded = tf.image.decode_bmp(mask_string, 1)
else:
raise TypeError('==> Error: Only support jpg, png and bmp.')
# already in 0~1
image_decoded = tf.image.convert_image_dtype(image_decoded, tf.float32)
mask_decoded = tf.image.convert_image_dtype(mask_decoded, tf.float32)
return image_decoded, mask_decoded
示例10: CamVid_reader_seq
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import read_file [as 别名]
def CamVid_reader_seq(filename_queue, seq_length):
image_seq_filenames = tf.split(axis=0,
num_or_size_splits=seq_length,
value=filename_queue[0])
label_seq_filenames = tf.split(axis=0,
num_or_size_splits=seq_length,
value=filename_queue[1])
image_seq = []
label_seq = []
for im ,la in zip(image_seq_filenames, label_seq_filenames):
imageValue = tf.read_file(tf.squeeze(im))
labelValue = tf.read_file(tf.squeeze(la))
image_bytes = tf.image.decode_png(imageValue)
label_bytes = tf.image.decode_png(labelValue)
image = tf.cast(tf.reshape(image_bytes,
(IMAGE_HEIGHT, IMAGE_WIDTH, IMAGE_DEPTH)), tf.float32)
label = tf.cast(tf.reshape(label_bytes,
(IMAGE_HEIGHT, IMAGE_WIDTH, 1)), tf.int64)
image_seq.append(image)
label_seq.append(label)
return image_seq, label_seq
示例11: load_inference
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import read_file [as 别名]
def load_inference(filenames, labels, batch_size, resize=(32,32)):
# Single image estimation over multiple stochastic forward passes
def _preprocess_inference(image_path, label, resize=(32,32)):
# Preprocess individual images during inference
image_path = tf.squeeze(image_path)
image = tf.image.decode_png(tf.read_file(image_path))
image = tf.image.convert_image_dtype(image, dtype=tf.float32)
image = tf.image.per_image_standardization(image)
image = tf.image.resize_images(image, size=resize)
return image, label
dataset = tf.data.Dataset.from_tensor_slices((filenames, labels))
dataset = dataset.map(_preprocess_inference)
dataset = dataset.batch(batch_size)
return dataset
示例12: read_images_from_disk
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import read_file [as 别名]
def read_images_from_disk(input_queue, input_size, random_scale, random_mirror): # optional pre-processing arguments
"""Read one image and its corresponding mask with optional pre-processing.
Args:
input_queue: tf queue with paths to the image and its mask.
input_size: a tuple with (height, width) values.
If not given, return images of original size.
random_scale: whether to randomly scale the images prior
to random crop.
random_mirror: whether to randomly mirror the images prior
to random crop.
Returns:
Two tensors: the decoded image and its mask.
"""
img_contents = tf.read_file(input_queue[0])
img = tf.image.decode_jpeg(img_contents, channels=3)
img_r, img_g, img_b = tf.split(value=img, num_or_size_splits=3, axis=2)
img = tf.cast(tf.concat([img_b, img_g, img_r], 2), dtype=tf.float32)
# Extract mean.
img -= IMG_MEAN
return img
示例13: read_from_disk
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import read_file [as 别名]
def read_from_disk(self,queue):
index_t=queue[0]#tf.random_shuffle(self.input_list)[0]
index_min=tf.reshape(tf.where(tf.less_equal(self.node,index_t)),[-1])
node_min=self.node[index_min[-1]]
node_max=self.node[index_min[-1]+1]
interval_list=list(range(30,100))
interval=tf.random_shuffle(interval_list)[0]
index_d=[tf.cond(tf.greater(index_t-interval,node_min),lambda:index_t-interval,lambda:index_t+interval),tf.cond(tf.less(index_t+interval,node_max),lambda:index_t+interval,lambda:index_t-interval)]
index_d=tf.random_shuffle(index_d)
index_d=index_d[0]
constant_t=tf.read_file(self.img_list[index_t])
template=tf.image.decode_jpeg(constant_t, channels=3)
template=template[:,:,::-1]
constant_d=tf.read_file(self.img_list[index_d])
detection=tf.image.decode_jpeg(constant_d, channels=3)
detection=detection[:,:,::-1]
template_label=self.label_list[index_t]
detection_label=self.label_list[index_d]
template_p,template_label_p,_,_=self.crop_resize(template,template_label,1)
detection_p,detection_label_p,offset,ratio=self.crop_resize(detection,detection_label,2)
return template_p,template_label_p,detection_p,detection_label_p,offset,ratio,detection,detection_label,index_t,index_d
示例14: dataset_reader
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import read_file [as 别名]
def dataset_reader(filename_queue): #prev name: CamVid_reader
image_filename = filename_queue[0] #tensor of type string
label_filename = filename_queue[1] #tensor of type string
#get png encoded image
imageValue = tf.read_file(image_filename)
labelValue = tf.read_file(label_filename)
#decodes a png image into a uint8 or uint16 tensor
#returns a tensor of type dtype with shape [height, width, depth]
image_bytes = tf.image.decode_png(imageValue)
label_bytes = tf.image.decode_png(labelValue) #Labels are png, not jpeg
image = tf.reshape(image_bytes, (FLAGS.image_h, FLAGS.image_w, FLAGS.image_c))
label = tf.reshape(label_bytes, (FLAGS.image_h, FLAGS.image_w, 1))
return image, label
示例15: read_one_image
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import read_file [as 别名]
def read_one_image(filename):
''' This method is to show how to read image from a file into a tensor.
The output is a tensor object.
'''
image_string = tf.read_file(filename)
image_decoded = tf.image.decode_image(image_string)
image = tf.cast(image_decoded, tf.float32) / 256.0
return image