当前位置: 首页>>代码示例>>Python>>正文


Python tensorflow.range方法代码示例

本文整理汇总了Python中tensorflow.range方法的典型用法代码示例。如果您正苦于以下问题:Python tensorflow.range方法的具体用法?Python tensorflow.range怎么用?Python tensorflow.range使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.range方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: stp_transformation

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import range [as 别名]
def stp_transformation(prev_image, stp_input, num_masks):
  """Apply spatial transformer predictor (STP) to previous image.

  Args:
    prev_image: previous image to be transformed.
    stp_input: hidden layer to be used for computing STN parameters.
    num_masks: number of masks and hence the number of STP transformations.
  Returns:
    List of images transformed by the predicted STP parameters.
  """
  # Only import spatial transformer if needed.
  from spatial_transformer import transformer

  identity_params = tf.convert_to_tensor(
      np.array([1.0, 0.0, 0.0, 0.0, 1.0, 0.0], np.float32))
  transformed = []
  for i in range(num_masks - 1):
    params = slim.layers.fully_connected(
        stp_input, 6, scope='stp_params' + str(i),
        activation_fn=None) + identity_params
    transformed.append(transformer(prev_image, params))

  return transformed 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:25,代码来源:prediction_model.py

示例2: scheduled_sample

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import range [as 别名]
def scheduled_sample(ground_truth_x, generated_x, batch_size, num_ground_truth):
  """Sample batch with specified mix of ground truth and generated data points.

  Args:
    ground_truth_x: tensor of ground-truth data points.
    generated_x: tensor of generated data points.
    batch_size: batch size
    num_ground_truth: number of ground-truth examples to include in batch.
  Returns:
    New batch with num_ground_truth sampled from ground_truth_x and the rest
    from generated_x.
  """
  idx = tf.random_shuffle(tf.range(int(batch_size)))
  ground_truth_idx = tf.gather(idx, tf.range(num_ground_truth))
  generated_idx = tf.gather(idx, tf.range(num_ground_truth, int(batch_size)))

  ground_truth_examps = tf.gather(ground_truth_x, ground_truth_idx)
  generated_examps = tf.gather(generated_x, generated_idx)
  return tf.dynamic_stitch([ground_truth_idx, generated_idx],
                           [ground_truth_examps, generated_examps]) 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:22,代码来源:prediction_model.py

示例3: clip_tensor

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import range [as 别名]
def clip_tensor(t, length):
  """Clips the input tensor along the first dimension up to the length.

  Args:
    t: the input tensor, assuming the rank is at least 1.
    length: a tensor of shape [1]  or an integer, indicating the first dimension
      of the input tensor t after clipping, assuming length <= t.shape[0].

  Returns:
    clipped_t: the clipped tensor, whose first dimension is length. If the
      length is an integer, the first dimension of clipped_t is set to length
      statically.
  """
  clipped_t = tf.gather(t, tf.range(length))
  if not _is_tensor(length):
    clipped_t = _set_dim_0(clipped_t, length)
  return clipped_t 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:19,代码来源:shape_utils.py

示例4: _define_experience

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import range [as 别名]
def _define_experience(self, observ, action, reward):
    """Implement the branch of experience() entered during training."""
    update_filters = tf.summary.merge([
        self._observ_filter.update(observ),
        self._reward_filter.update(reward)])
    with tf.control_dependencies([update_filters]):
      if self._config.train_on_agent_action:
        # NOTE: Doesn't seem to change much.
        action = self._last_action
      batch = observ, action, self._last_mean, self._last_logstd, reward
      append = self._episodes.append(batch, tf.range(len(self._batch_env)))
    with tf.control_dependencies([append]):
      norm_observ = self._observ_filter.transform(observ)
      norm_reward = tf.reduce_mean(self._reward_filter.transform(reward))
      # pylint: disable=g-long-lambda
      summary = tf.cond(self._should_log, lambda: tf.summary.merge([
          update_filters,
          self._observ_filter.summary(),
          self._reward_filter.summary(),
          tf.summary.scalar('memory_size', self._memory_index),
          tf.summary.histogram('normalized_observ', norm_observ),
          tf.summary.histogram('action', self._last_action),
          tf.summary.scalar('normalized_reward', norm_reward)]), str)
      return summary 
开发者ID:utra-robosoccer,项目名称:soccer-matlab,代码行数:26,代码来源:algorithm.py

示例5: _update_value

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import range [as 别名]
def _update_value(self, observ, reward, length):
    """Perform multiple update steps of the value baseline.

    We need to decide for the summary of one iteration, and thus choose the one
    after half of the iterations.

    Args:
      observ: Sequences of observations.
      reward: Sequences of reward.
      length: Batch of sequence lengths.

    Returns:
      Summary tensor.
    """
    with tf.name_scope('update_value'):
      loss, summary = tf.scan(
          lambda _1, _2: self._update_value_step(observ, reward, length),
          tf.range(self._config.update_epochs_value),
          [0., ''], parallel_iterations=1)
      print_loss = tf.Print(0, [tf.reduce_mean(loss)], 'value loss: ')
      with tf.control_dependencies([loss, print_loss]):
        return summary[self._config.update_epochs_value // 2] 
开发者ID:utra-robosoccer,项目名称:soccer-matlab,代码行数:24,代码来源:algorithm.py

示例6: _mask

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import range [as 别名]
def _mask(self, tensor, length):
    """Set padding elements of a batch of sequences to zero.

    Useful to then safely sum along the time dimension.

    Args:
      tensor: Tensor of sequences.
      length: Batch of sequence lengths.

    Returns:
      Masked sequences.
    """
    with tf.name_scope('mask'):
      range_ = tf.range(tensor.shape[1].value)
      mask = tf.cast(range_[None, :] < length[:, None], tf.float32)
      masked = tensor * mask
      return tf.check_numerics(masked, 'masked') 
开发者ID:utra-robosoccer,项目名称:soccer-matlab,代码行数:19,代码来源:algorithm.py

示例7: replace

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import range [as 别名]
def replace(self, episodes, length, rows=None):
    """Replace full episodes.

    Args:
      episodes: Tuple of transition quantities with batch and time dimensions.
      length: Batch of sequence lengths.
      rows: Episodes to replace, defaults to all.

    Returns:
      Operation.
    """
    rows = tf.range(self._capacity) if rows is None else rows
    assert rows.shape.ndims == 1
    assert_capacity = tf.assert_less(
        rows, self._capacity, message='capacity exceeded')
    with tf.control_dependencies([assert_capacity]):
      assert_max_length = tf.assert_less_equal(
          length, self._max_length, message='max length exceeded')
    replace_ops = []
    with tf.control_dependencies([assert_max_length]):
      for buffer_, elements in zip(self._buffers, episodes):
        replace_op = tf.scatter_update(buffer_, rows, elements)
        replace_ops.append(replace_op)
    with tf.control_dependencies(replace_ops):
      return tf.scatter_update(self._length, rows, length) 
开发者ID:utra-robosoccer,项目名称:soccer-matlab,代码行数:27,代码来源:memory.py

示例8: data

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import range [as 别名]
def data(self, rows=None):
    """Access a batch of episodes from the memory.

    Padding elements after the length of each episode are unspecified and might
    contain old data.

    Args:
      rows: Episodes to select, defaults to all.

    Returns:
      Tuple containing a tuple of transition quantiries with batch and time
      dimensions, and a batch of sequence lengths.
    """
    rows = tf.range(self._capacity) if rows is None else rows
    assert rows.shape.ndims == 1
    episode = [tf.gather(buffer_, rows) for buffer_ in self._buffers]
    length = tf.gather(self._length, rows)
    return episode, length 
开发者ID:utra-robosoccer,项目名称:soccer-matlab,代码行数:20,代码来源:memory.py

示例9: reset

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import range [as 别名]
def reset(self, indices=None):
    """Reset the batch of environments.

    Args:
      indices: The batch indices of the environments to reset; defaults to all.

    Returns:
      Batch tensor of the new observations.
    """
    if indices is None:
      indices = tf.range(len(self._batch_env))
    observ_dtype = self._parse_dtype(self._batch_env.observation_space)
    observ = tf.py_func(
        self._batch_env.reset, [indices], observ_dtype, name='reset')
    observ = tf.check_numerics(observ, 'observ')
    reward = tf.zeros_like(indices, tf.float32)
    done = tf.zeros_like(indices, tf.bool)
    with tf.control_dependencies([
        tf.scatter_update(self._observ, indices, observ),
        tf.scatter_update(self._reward, indices, reward),
        tf.scatter_update(self._done, indices, done)]):
      return tf.identity(observ) 
开发者ID:utra-robosoccer,项目名称:soccer-matlab,代码行数:24,代码来源:in_graph_batch_env.py

示例10: simulate

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import range [as 别名]
def simulate(self, action):
    with tf.name_scope("environment/simulate"):  # Do we need this?
      initializer = (tf.zeros_like(self._observ),
                     tf.fill((len(self),), 0.0), tf.fill((len(self),), False))

      def not_done_step(a, _):
        reward, done = self._batch_env.simulate(action)
        with tf.control_dependencies([reward, done]):
          # TODO(piotrmilos): possibly ignore envs with done
          r0 = tf.maximum(a[0], self._batch_env.observ)
          r1 = tf.add(a[1], reward)
          r2 = tf.logical_or(a[2], done)

          return (r0, r1, r2)

      simulate_ret = tf.scan(not_done_step, tf.range(self.skip),
                             initializer=initializer, parallel_iterations=1,
                             infer_shape=False)
      simulate_ret = [ret[-1, ...] for ret in simulate_ret]

      with tf.control_dependencies([self._observ.assign(simulate_ret[0])]):
        return tf.identity(simulate_ret[1]), tf.identity(simulate_ret[2]) 
开发者ID:akzaidi,项目名称:fine-lm,代码行数:24,代码来源:tf_atari_wrappers.py

示例11: scheduled_sample

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import range [as 别名]
def scheduled_sample(self,
                       ground_truth_x,
                       generated_x,
                       batch_size,
                       num_ground_truth):
    """Sample batch with specified mix of groundtruth and generated data points.

    Args:
      ground_truth_x: tensor of ground-truth data points.
      generated_x: tensor of generated data points.
      batch_size: batch size
      num_ground_truth: number of ground-truth examples to include in batch.
    Returns:
      New batch with num_ground_truth sampled from ground_truth_x and the rest
      from generated_x.
    """
    idx = tf.random_shuffle(tf.range(batch_size))
    ground_truth_idx = tf.gather(idx, tf.range(num_ground_truth))
    generated_idx = tf.gather(idx, tf.range(num_ground_truth, batch_size))

    ground_truth_examps = tf.gather(ground_truth_x, ground_truth_idx)
    generated_examps = tf.gather(generated_x, generated_idx)
    return tf.dynamic_stitch([ground_truth_idx, generated_idx],
                             [ground_truth_examps, generated_examps]) 
开发者ID:akzaidi,项目名称:fine-lm,代码行数:26,代码来源:next_frame.py

示例12: stacked_lstm

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import range [as 别名]
def stacked_lstm(self, inputs, states, hidden_size, output_size, nlayers):
    """Stacked LSTM layers with FC layers as input and output embeddings.

    Args:
      inputs: input tensor
      states: a list of internal lstm states for each layer
      hidden_size: number of lstm units
      output_size: size of the output
      nlayers: number of lstm layers
    Returns:
      net: output of the network
      skips: a list of updated lstm states for each layer
    """
    net = inputs
    net = slim.layers.fully_connected(
        net, hidden_size, activation_fn=None, scope="af1")
    for i in range(nlayers):
      net, states[i] = self.basic_lstm(
          net, states[i], hidden_size, scope="alstm%d"%i)
    net = slim.layers.fully_connected(
        net, output_size, activation_fn=tf.tanh, scope="af2")
    return net, states 
开发者ID:akzaidi,项目名称:fine-lm,代码行数:24,代码来源:next_frame.py

示例13: lstm_gaussian

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import range [as 别名]
def lstm_gaussian(self, inputs, states, hidden_size, output_size, nlayers):
    """Stacked LSTM layers with FC layer as input and gaussian as output.

    Args:
      inputs: input tensor
      states: a list of internal lstm states for each layer
      hidden_size: number of lstm units
      output_size: size of the output
      nlayers: number of lstm layers
    Returns:
      mu: mean of the predicted gaussian
      logvar: log(var) of the predicted gaussian
      skips: a list of updated lstm states for each layer
    """
    net = inputs
    net = slim.layers.fully_connected(net, hidden_size,
                                      activation_fn=None, scope="bf1")
    for i in range(nlayers):
      net, states[i] = self.basic_lstm(
          net, states[i], hidden_size, scope="blstm%d"%i)
    mu = slim.layers.fully_connected(
        net, output_size, activation_fn=None, scope="bf2mu")
    logvar = slim.layers.fully_connected(
        net, output_size, activation_fn=None, scope="bf2log")
    return mu, logvar, states 
开发者ID:akzaidi,项目名称:fine-lm,代码行数:27,代码来源:next_frame.py

示例14: get_timing_signal

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import range [as 别名]
def get_timing_signal(length,
                      min_timescale=1,
                      max_timescale=1e4,
                      num_timescales=16):
  """Create Tensor of sinusoids of different frequencies.

  Args:
    length: Length of the Tensor to create, i.e. Number of steps.
    min_timescale: a float
    max_timescale: a float
    num_timescales: an int

  Returns:
    Tensor of shape (length, 2*num_timescales)
  """
  positions = tf.to_float(tf.range(length))
  log_timescale_increment = (
      math.log(max_timescale / min_timescale) / (num_timescales - 1))
  inv_timescales = min_timescale * tf.exp(
      tf.to_float(tf.range(num_timescales)) * -log_timescale_increment)
  scaled_time = tf.expand_dims(positions, 1) * tf.expand_dims(inv_timescales, 0)
  return tf.concat([tf.sin(scaled_time), tf.cos(scaled_time)], axis=1) 
开发者ID:akzaidi,项目名称:fine-lm,代码行数:24,代码来源:common_layers.py

示例15: smoothing_cross_entropy_factored

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import range [as 别名]
def smoothing_cross_entropy_factored(a, b, labels, confidence):
  """Memory-efficient computation of smoothing cross-entropy.

  Avoids realizing the entire logits matrix at once.

  Args:
    a: a Tensor with shape [batch, inner_dim]
    b: a Tensor with shape [vocab_size, inner_dim]
    labels: an integer Tensor with shape [batch]
    confidence: a float

  Returns:
    A Tensor with shape [batch]
  """
  num_splits = 16
  vocab_size = shape_list(b)[0]
  labels = approximate_split(labels, num_splits)
  a = approximate_split(a, num_splits)
  parts = []
  for part in range(num_splits):
    with tf.control_dependencies(parts[-1:]):
      logits = tf.matmul(a[part], b, transpose_b=True)
      parts.append(
          smoothing_cross_entropy(logits, labels[part], vocab_size, confidence))
  return tf.concat(parts, 0) 
开发者ID:akzaidi,项目名称:fine-lm,代码行数:27,代码来源:common_layers.py


注:本文中的tensorflow.range方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。