本文整理汇总了Python中tensorflow.random_uniform方法的典型用法代码示例。如果您正苦于以下问题:Python tensorflow.random_uniform方法的具体用法?Python tensorflow.random_uniform怎么用?Python tensorflow.random_uniform使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow
的用法示例。
在下文中一共展示了tensorflow.random_uniform方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: structure
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import random_uniform [as 别名]
def structure(self, input_tensor):
"""
Args:
input_tensor: NHWC
"""
rnd = tf.random_uniform((), 135, 160, dtype=tf.int32)
rescaled = tf.image.resize_images(
input_tensor, [rnd, rnd], method=tf.image.ResizeMethod.NEAREST_NEIGHBOR)
h_rem = 160 - rnd
w_rem = 160 - rnd
pad_left = tf.random_uniform((), 0, w_rem, dtype=tf.int32)
pad_right = w_rem - pad_left
pad_top = tf.random_uniform((), 0, h_rem, dtype=tf.int32)
pad_bottom = h_rem - pad_top
padded = tf.pad(rescaled, [[0, 0], [pad_top, pad_bottom], [
pad_left, pad_right], [0, 0]])
padded.set_shape((input_tensor.shape[0], 160, 160, 3))
output = tf.cond(tf.random_uniform(shape=[1])[0] < tf.constant(0.9),
lambda: padded, lambda: input_tensor)
return output
示例2: set_input_shape
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import random_uniform [as 别名]
def set_input_shape(self, input_shape):
batch_size, dim = input_shape
self.input_shape = [batch_size, dim]
self.output_shape = [batch_size, self.num_hid]
if self.init_mode == "norm":
init = tf.random_normal([dim, self.num_hid], dtype=tf.float32)
init = init / tf.sqrt(1e-7 + tf.reduce_sum(tf.square(init), axis=0,
keep_dims=True))
init = init * self.init_scale
elif self.init_mode == "uniform_unit_scaling":
scale = np.sqrt(3. / dim)
init = tf.random_uniform([dim, self.num_hid], dtype=tf.float32,
minval=-scale, maxval=scale)
else:
raise ValueError(self.init_mode)
self.W = PV(init)
if self.use_bias:
self.b = PV((np.zeros((self.num_hid,))
+ self.init_b).astype('float32'))
示例3: testEndPoints
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import random_uniform [as 别名]
def testEndPoints(self):
batch_size = 5
height, width = 231, 231
num_classes = 1000
with self.test_session():
inputs = tf.random_uniform((batch_size, height, width, 3))
_, end_points = overfeat.overfeat(inputs, num_classes)
expected_names = ['overfeat/conv1',
'overfeat/pool1',
'overfeat/conv2',
'overfeat/pool2',
'overfeat/conv3',
'overfeat/conv4',
'overfeat/conv5',
'overfeat/pool5',
'overfeat/fc6',
'overfeat/fc7',
'overfeat/fc8'
]
self.assertSetEqual(set(end_points.keys()), set(expected_names))
示例4: testEndPoints
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import random_uniform [as 别名]
def testEndPoints(self):
batch_size = 5
height, width = 224, 224
num_classes = 1000
with self.test_session():
inputs = tf.random_uniform((batch_size, height, width, 3))
_, end_points = alexnet.alexnet_v2(inputs, num_classes)
expected_names = ['alexnet_v2/conv1',
'alexnet_v2/pool1',
'alexnet_v2/conv2',
'alexnet_v2/pool2',
'alexnet_v2/conv3',
'alexnet_v2/conv4',
'alexnet_v2/conv5',
'alexnet_v2/pool5',
'alexnet_v2/fc6',
'alexnet_v2/fc7',
'alexnet_v2/fc8'
]
self.assertSetEqual(set(end_points.keys()), set(expected_names))
示例5: testTrainEvalWithReuse
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import random_uniform [as 别名]
def testTrainEvalWithReuse(self):
train_batch_size = 2
eval_batch_size = 1
train_height, train_width = 224, 224
eval_height, eval_width = 300, 400
num_classes = 1000
with self.test_session():
train_inputs = tf.random_uniform(
(train_batch_size, train_height, train_width, 3))
logits, _ = alexnet.alexnet_v2(train_inputs)
self.assertListEqual(logits.get_shape().as_list(),
[train_batch_size, num_classes])
tf.get_variable_scope().reuse_variables()
eval_inputs = tf.random_uniform(
(eval_batch_size, eval_height, eval_width, 3))
logits, _ = alexnet.alexnet_v2(eval_inputs, is_training=False,
spatial_squeeze=False)
self.assertListEqual(logits.get_shape().as_list(),
[eval_batch_size, 4, 7, num_classes])
logits = tf.reduce_mean(logits, [1, 2])
predictions = tf.argmax(logits, 1)
self.assertEquals(predictions.get_shape().as_list(), [eval_batch_size])
示例6: testEndPoints
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import random_uniform [as 别名]
def testEndPoints(self):
batch_size = 5
height, width = 224, 224
num_classes = 1000
with self.test_session():
inputs = tf.random_uniform((batch_size, height, width, 3))
_, end_points = vgg.vgg_a(inputs, num_classes)
expected_names = ['vgg_a/conv1/conv1_1',
'vgg_a/pool1',
'vgg_a/conv2/conv2_1',
'vgg_a/pool2',
'vgg_a/conv3/conv3_1',
'vgg_a/conv3/conv3_2',
'vgg_a/pool3',
'vgg_a/conv4/conv4_1',
'vgg_a/conv4/conv4_2',
'vgg_a/pool4',
'vgg_a/conv5/conv5_1',
'vgg_a/conv5/conv5_2',
'vgg_a/pool5',
'vgg_a/fc6',
'vgg_a/fc7',
'vgg_a/fc8'
]
self.assertSetEqual(set(end_points.keys()), set(expected_names))
示例7: testTrainEvalWithReuse
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import random_uniform [as 别名]
def testTrainEvalWithReuse(self):
train_batch_size = 2
eval_batch_size = 1
train_height, train_width = 224, 224
eval_height, eval_width = 256, 256
num_classes = 1000
with self.test_session():
train_inputs = tf.random_uniform(
(train_batch_size, train_height, train_width, 3))
logits, _ = vgg.vgg_a(train_inputs)
self.assertListEqual(logits.get_shape().as_list(),
[train_batch_size, num_classes])
tf.get_variable_scope().reuse_variables()
eval_inputs = tf.random_uniform(
(eval_batch_size, eval_height, eval_width, 3))
logits, _ = vgg.vgg_a(eval_inputs, is_training=False,
spatial_squeeze=False)
self.assertListEqual(logits.get_shape().as_list(),
[eval_batch_size, 2, 2, num_classes])
logits = tf.reduce_mean(logits, [1, 2])
predictions = tf.argmax(logits, 1)
self.assertEquals(predictions.get_shape().as_list(), [eval_batch_size])
示例8: testBuildLogits
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import random_uniform [as 别名]
def testBuildLogits(self):
batch_size = 5
height, width = 299, 299
num_classes = 1000
with self.test_session():
inputs = tf.random_uniform((batch_size, height, width, 3))
logits, endpoints = inception.inception_resnet_v2(inputs, num_classes)
self.assertTrue('AuxLogits' in endpoints)
auxlogits = endpoints['AuxLogits']
self.assertTrue(
auxlogits.op.name.startswith('InceptionResnetV2/AuxLogits'))
self.assertListEqual(auxlogits.get_shape().as_list(),
[batch_size, num_classes])
self.assertTrue(logits.op.name.startswith('InceptionResnetV2/Logits'))
self.assertListEqual(logits.get_shape().as_list(),
[batch_size, num_classes])
示例9: testBuildEndPoints
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import random_uniform [as 别名]
def testBuildEndPoints(self):
batch_size = 5
height, width = 299, 299
num_classes = 1000
with self.test_session():
inputs = tf.random_uniform((batch_size, height, width, 3))
_, end_points = inception.inception_resnet_v2(inputs, num_classes)
self.assertTrue('Logits' in end_points)
logits = end_points['Logits']
self.assertListEqual(logits.get_shape().as_list(),
[batch_size, num_classes])
self.assertTrue('AuxLogits' in end_points)
aux_logits = end_points['AuxLogits']
self.assertListEqual(aux_logits.get_shape().as_list(),
[batch_size, num_classes])
pre_pool = end_points['Conv2d_7b_1x1']
self.assertListEqual(pre_pool.get_shape().as_list(),
[batch_size, 8, 8, 1536])
示例10: testBuildAndCheckAllEndPointsUptoPreAuxLogits
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import random_uniform [as 别名]
def testBuildAndCheckAllEndPointsUptoPreAuxLogits(self):
batch_size = 5
height, width = 299, 299
inputs = tf.random_uniform((batch_size, height, width, 3))
_, end_points = inception.inception_resnet_v2_base(
inputs, final_endpoint='PreAuxLogits')
endpoints_shapes = {'Conv2d_1a_3x3': [5, 149, 149, 32],
'Conv2d_2a_3x3': [5, 147, 147, 32],
'Conv2d_2b_3x3': [5, 147, 147, 64],
'MaxPool_3a_3x3': [5, 73, 73, 64],
'Conv2d_3b_1x1': [5, 73, 73, 80],
'Conv2d_4a_3x3': [5, 71, 71, 192],
'MaxPool_5a_3x3': [5, 35, 35, 192],
'Mixed_5b': [5, 35, 35, 320],
'Mixed_6a': [5, 17, 17, 1088],
'PreAuxLogits': [5, 17, 17, 1088]
}
self.assertItemsEqual(endpoints_shapes.keys(), end_points.keys())
for endpoint_name in endpoints_shapes:
expected_shape = endpoints_shapes[endpoint_name]
self.assertTrue(endpoint_name in end_points)
self.assertListEqual(end_points[endpoint_name].get_shape().as_list(),
expected_shape)
示例11: testBuildAndCheckAllEndPointsUptoPreAuxLogitsWithAlignedFeatureMaps
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import random_uniform [as 别名]
def testBuildAndCheckAllEndPointsUptoPreAuxLogitsWithAlignedFeatureMaps(self):
batch_size = 5
height, width = 299, 299
inputs = tf.random_uniform((batch_size, height, width, 3))
_, end_points = inception.inception_resnet_v2_base(
inputs, final_endpoint='PreAuxLogits', align_feature_maps=True)
endpoints_shapes = {'Conv2d_1a_3x3': [5, 150, 150, 32],
'Conv2d_2a_3x3': [5, 150, 150, 32],
'Conv2d_2b_3x3': [5, 150, 150, 64],
'MaxPool_3a_3x3': [5, 75, 75, 64],
'Conv2d_3b_1x1': [5, 75, 75, 80],
'Conv2d_4a_3x3': [5, 75, 75, 192],
'MaxPool_5a_3x3': [5, 38, 38, 192],
'Mixed_5b': [5, 38, 38, 320],
'Mixed_6a': [5, 19, 19, 1088],
'PreAuxLogits': [5, 19, 19, 1088]
}
self.assertItemsEqual(endpoints_shapes.keys(), end_points.keys())
for endpoint_name in endpoints_shapes:
expected_shape = endpoints_shapes[endpoint_name]
self.assertTrue(endpoint_name in end_points)
self.assertListEqual(end_points[endpoint_name].get_shape().as_list(),
expected_shape)
示例12: testBuildAndCheckAllEndPointsUptoPreAuxLogitsWithOutputStrideEight
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import random_uniform [as 别名]
def testBuildAndCheckAllEndPointsUptoPreAuxLogitsWithOutputStrideEight(self):
batch_size = 5
height, width = 299, 299
inputs = tf.random_uniform((batch_size, height, width, 3))
_, end_points = inception.inception_resnet_v2_base(
inputs, final_endpoint='PreAuxLogits', output_stride=8)
endpoints_shapes = {'Conv2d_1a_3x3': [5, 149, 149, 32],
'Conv2d_2a_3x3': [5, 147, 147, 32],
'Conv2d_2b_3x3': [5, 147, 147, 64],
'MaxPool_3a_3x3': [5, 73, 73, 64],
'Conv2d_3b_1x1': [5, 73, 73, 80],
'Conv2d_4a_3x3': [5, 71, 71, 192],
'MaxPool_5a_3x3': [5, 35, 35, 192],
'Mixed_5b': [5, 35, 35, 320],
'Mixed_6a': [5, 33, 33, 1088],
'PreAuxLogits': [5, 33, 33, 1088]
}
self.assertItemsEqual(endpoints_shapes.keys(), end_points.keys())
for endpoint_name in endpoints_shapes:
expected_shape = endpoints_shapes[endpoint_name]
self.assertTrue(endpoint_name in end_points)
self.assertListEqual(end_points[endpoint_name].get_shape().as_list(),
expected_shape)
示例13: testTrainEvalWithReuse
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import random_uniform [as 别名]
def testTrainEvalWithReuse(self):
train_batch_size = 5
eval_batch_size = 2
height, width = 150, 150
num_classes = 1000
with self.test_session() as sess:
train_inputs = tf.random_uniform((train_batch_size, height, width, 3))
inception.inception_resnet_v2(train_inputs, num_classes)
eval_inputs = tf.random_uniform((eval_batch_size, height, width, 3))
logits, _ = inception.inception_resnet_v2(eval_inputs,
num_classes,
is_training=False,
reuse=True)
predictions = tf.argmax(logits, 1)
sess.run(tf.global_variables_initializer())
output = sess.run(predictions)
self.assertEquals(output.shape, (eval_batch_size,))
示例14: testBuildBaseNetwork
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import random_uniform [as 别名]
def testBuildBaseNetwork(self):
batch_size = 5
height, width = 224, 224
inputs = tf.random_uniform((batch_size, height, width, 3))
net, end_points = mobilenet_v1.mobilenet_v1_base(inputs)
self.assertTrue(net.op.name.startswith('MobilenetV1/Conv2d_13'))
self.assertListEqual(net.get_shape().as_list(),
[batch_size, 7, 7, 1024])
expected_endpoints = ['Conv2d_0',
'Conv2d_1_depthwise', 'Conv2d_1_pointwise',
'Conv2d_2_depthwise', 'Conv2d_2_pointwise',
'Conv2d_3_depthwise', 'Conv2d_3_pointwise',
'Conv2d_4_depthwise', 'Conv2d_4_pointwise',
'Conv2d_5_depthwise', 'Conv2d_5_pointwise',
'Conv2d_6_depthwise', 'Conv2d_6_pointwise',
'Conv2d_7_depthwise', 'Conv2d_7_pointwise',
'Conv2d_8_depthwise', 'Conv2d_8_pointwise',
'Conv2d_9_depthwise', 'Conv2d_9_pointwise',
'Conv2d_10_depthwise', 'Conv2d_10_pointwise',
'Conv2d_11_depthwise', 'Conv2d_11_pointwise',
'Conv2d_12_depthwise', 'Conv2d_12_pointwise',
'Conv2d_13_depthwise', 'Conv2d_13_pointwise']
self.assertItemsEqual(end_points.keys(), expected_endpoints)
示例15: testBuildOnlyUptoFinalEndpoint
# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import random_uniform [as 别名]
def testBuildOnlyUptoFinalEndpoint(self):
batch_size = 5
height, width = 224, 224
endpoints = ['Conv2d_0',
'Conv2d_1_depthwise', 'Conv2d_1_pointwise',
'Conv2d_2_depthwise', 'Conv2d_2_pointwise',
'Conv2d_3_depthwise', 'Conv2d_3_pointwise',
'Conv2d_4_depthwise', 'Conv2d_4_pointwise',
'Conv2d_5_depthwise', 'Conv2d_5_pointwise',
'Conv2d_6_depthwise', 'Conv2d_6_pointwise',
'Conv2d_7_depthwise', 'Conv2d_7_pointwise',
'Conv2d_8_depthwise', 'Conv2d_8_pointwise',
'Conv2d_9_depthwise', 'Conv2d_9_pointwise',
'Conv2d_10_depthwise', 'Conv2d_10_pointwise',
'Conv2d_11_depthwise', 'Conv2d_11_pointwise',
'Conv2d_12_depthwise', 'Conv2d_12_pointwise',
'Conv2d_13_depthwise', 'Conv2d_13_pointwise']
for index, endpoint in enumerate(endpoints):
with tf.Graph().as_default():
inputs = tf.random_uniform((batch_size, height, width, 3))
out_tensor, end_points = mobilenet_v1.mobilenet_v1_base(
inputs, final_endpoint=endpoint)
self.assertTrue(out_tensor.op.name.startswith(
'MobilenetV1/' + endpoint))
self.assertItemsEqual(endpoints[:index+1], end_points)