当前位置: 首页>>代码示例>>Python>>正文


Python tensorflow.random_flip_up_down方法代码示例

本文整理汇总了Python中tensorflow.random_flip_up_down方法的典型用法代码示例。如果您正苦于以下问题:Python tensorflow.random_flip_up_down方法的具体用法?Python tensorflow.random_flip_up_down怎么用?Python tensorflow.random_flip_up_down使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.random_flip_up_down方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: flip_dim

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import random_flip_up_down [as 别名]
def flip_dim(tensor_list, prob=0.5, dim=1):
    """Randomly flips a dimension of the given tensor.

    The decision to randomly flip the `Tensors` is made together. In other words,
    all or none of the images pass in are flipped.

    Note that tf.random_flip_left_right and tf.random_flip_up_down isn't used so
    that we can control for the probability as well as ensure the same decision
    is applied across the images.

    Args:
      tensor_list: A list of `Tensors` with the same number of dimensions.
      prob: The probability of a left-right flip.
      dim: The dimension to flip, 0, 1, ..

    Returns:
      outputs: A list of the possibly flipped `Tensors` as well as an indicator
      `Tensor` at the end whose value is `True` if the inputs were flipped and
      `False` otherwise.

    Raises:
      ValueError: If dim is negative or greater than the dimension of a `Tensor`.
    """
    random_value = tf.random_uniform([])

    def flip():
        flipped = []
        for tensor in tensor_list:
            if dim < 0 or dim >= len(tensor.get_shape().as_list()):
                raise ValueError('dim must represent a valid dimension.')
            flipped.append(tf.reverse_v2(tensor, [dim]))
        return flipped

    is_flipped = tf.less_equal(random_value, prob)
    outputs = tf.cond(is_flipped, flip, lambda: tensor_list)
    if not isinstance(outputs, (list, tuple)):
        outputs = [outputs]
    outputs.append(is_flipped)

    return outputs 
开发者ID:sercant,项目名称:mobile-segmentation,代码行数:42,代码来源:preprocess_utils.py

示例2: flip_dim

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import random_flip_up_down [as 别名]
def flip_dim(tensor_list, prob=0.5, dim=1):
  """Randomly flips a dimension of the given tensor.

  The decision to randomly flip the `Tensors` is made together. In other words,
  all or none of the images pass in are flipped.

  Note that tf.random_flip_left_right and tf.random_flip_up_down isn't used so
  that we can control for the probability as well as ensure the same decision
  is applied across the images.

  Args:
    tensor_list: A list of `Tensors` with the same number of dimensions.
    prob: The probability of a left-right flip.
    dim: The dimension to flip, 0, 1, ..

  Returns:
    outputs: A list of the possibly flipped `Tensors` as well as an indicator
    `Tensor` at the end whose value is `True` if the inputs were flipped and
    `False` otherwise.

  Raises:
    ValueError: If dim is negative or greater than the dimension of a `Tensor`.
  """
  random_value = tf.random_uniform([])

  def flip():
    flipped = []
    for tensor in tensor_list:
      if dim < 0 or dim >= len(tensor.get_shape().as_list()):
        raise ValueError('dim must represent a valid dimension.')
      flipped.append(tf.reverse_v2(tensor, [dim]))
    return flipped

  is_flipped = tf.less_equal(random_value, prob)
  outputs = tf.cond(is_flipped, flip, lambda: tensor_list)
  if not isinstance(outputs, (list, tuple)):
    outputs = [outputs]
  outputs.append(is_flipped)

  return outputs 
开发者ID:tobiasfshr,项目名称:MOTSFusion,代码行数:42,代码来源:preprocess_utils.py

示例3: flip_dim

# 需要导入模块: import tensorflow [as 别名]
# 或者: from tensorflow import random_flip_up_down [as 别名]
def flip_dim(tensor_list, prob=0.5, dim=1):
    """Randomly flips a dimension of the given tensor.

    The decision to randomly flip the `Tensors` is made together.
    In other words, all or none of the images pass in are flipped.

    Note that tf.random_flip_left_right and tf.random_flip_up_down isn't used
     so that we can control for the probability as well as ensure the
     same decision is applied across the images.

    Args:
      tensor_list: A list of `Tensors` with the same number of dimensions.
      prob: The probability of a left-right flip.
      dim: The dimension to flip, 0, 1, ..

    Returns:
      outputs: A list of the possibly flipped `Tensors` as well as an indicator
      `Tensor` at the end whose value is `True` if the inputs were flipped and
      `False` otherwise.

    Raises:
      ValueError: If dim is negative or greater than dimension of a `Tensor`.
    """
    random_value = tf.random_uniform([])

    def flip():
        flipped = []
        for tensor in tensor_list:
            if dim < 0 or dim >= len(tensor.get_shape().as_list()):
                raise ValueError('dim must represent a valid dimension.')
            flipped.append(tf.reverse_v2(tensor, [dim]))
        return flipped

    is_flipped = tf.less_equal(random_value, prob)
    outputs = tf.cond(is_flipped, flip, lambda: tensor_list)
    if not isinstance(outputs, (list, tuple)):
        outputs = [outputs]
    outputs.append(is_flipped)

    return outputs 
开发者ID:nolanliou,项目名称:mobile-deeplab-v3-plus,代码行数:42,代码来源:utils.py


注:本文中的tensorflow.random_flip_up_down方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。