本文整理汇总了Python中tensorflow.python.training.training_util.get_global_step方法的典型用法代码示例。如果您正苦于以下问题:Python training_util.get_global_step方法的具体用法?Python training_util.get_global_step怎么用?Python training_util.get_global_step使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.python.training.training_util
的用法示例。
在下文中一共展示了training_util.get_global_step方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: assert_or_get_global_step
# 需要导入模块: from tensorflow.python.training import training_util [as 别名]
# 或者: from tensorflow.python.training.training_util import get_global_step [as 别名]
def assert_or_get_global_step(graph=None, global_step_tensor=None):
"""Verifies that a global step tensor is valid or gets one if None is given.
If `global_step_tensor` is not None, check that it is a valid global step
tensor (using `assert_global_step`). Otherwise find a global step tensor using
`get_global_step` and return it.
Args:
graph: The graph to find the global step tensor for.
global_step_tensor: The tensor to check for suitability as a global step. If
None is given (the default), find a global step tensor.
Returns:
A tensor suitable as a global step, or `None` if none was provided and none
was found.
"""
if global_step_tensor is None:
# Get the global step tensor the same way the supervisor would.
global_step_tensor = get_global_step(graph)
else:
assert_global_step(global_step_tensor)
return global_step_tensor
示例2: assert_or_get_global_step
# 需要导入模块: from tensorflow.python.training import training_util [as 别名]
# 或者: from tensorflow.python.training.training_util import get_global_step [as 别名]
def assert_or_get_global_step(graph=None, global_step_tensor=None):
"""Verifies that a global step tensor is valid or gets one if None is given.
If `global_step_tensor` is not None, check that it is a valid global step
tensor (using `assert_global_step`). Otherwise find a global step tensor using
`get_global_step` and return it.
Args:
graph: The graph to find the global step tensor for.
global_step_tensor: The tensor to check for suitability as a global step.
If None is given (the default), find a global step tensor.
Returns:
A tensor suitable as a global step, or `None` if none was provided and none
was found.
"""
if global_step_tensor is None:
# Get the global step tensor the same way the supervisor would.
global_step_tensor = get_global_step(graph)
else:
assert_global_step(global_step_tensor)
return global_step_tensor
示例3: create_global_step
# 需要导入模块: from tensorflow.python.training import training_util [as 别名]
# 或者: from tensorflow.python.training.training_util import get_global_step [as 别名]
def create_global_step(graph=None):
"""Create global step tensor in graph.
Args:
graph: The graph in which to create the global step. If missing, use default
graph.
Returns:
Global step tensor.
Raises:
ValueError: if global step key is already defined.
"""
graph = ops.get_default_graph() if graph is None else graph
if get_global_step(graph) is not None:
raise ValueError('"global_step" already exists.')
# Create in proper graph and base name_scope.
with graph.as_default() as g, g.name_scope(None):
collections = [ops.GraphKeys.GLOBAL_VARIABLES, ops.GraphKeys.GLOBAL_STEP]
return variable(ops.GraphKeys.GLOBAL_STEP, shape=[], dtype=dtypes.int64,
initializer=init_ops.zeros_initializer, trainable=False,
collections=collections)
示例4: begin
# 需要导入模块: from tensorflow.python.training import training_util [as 别名]
# 或者: from tensorflow.python.training.training_util import get_global_step [as 别名]
def begin(self):
self._global_step_tensor = training_util.get_global_step()
self._stop_var = self._get_or_create_stop_var_with_aggregation()
assert distribution_strategy_context.in_cross_replica_context()
strategy = distribution_strategy_context.get_strategy()
self._stop_placeholder = None
def stop_op_fn(var):
placeholder = array_ops.placeholder_with_default(
0, tuple(), name='stop_value')
if self._stop_placeholder is None:
self._stop_placeholder = placeholder
return var.assign_add(placeholder)
self._stop_op = strategy.run(
stop_op_fn, args=(self._stop_var,))
示例5: get_global_step
# 需要导入模块: from tensorflow.python.training import training_util [as 别名]
# 或者: from tensorflow.python.training.training_util import get_global_step [as 别名]
def get_global_step(graph=None):
return training_util.get_global_step(graph)
示例6: begin
# 需要导入模块: from tensorflow.python.training import training_util [as 别名]
# 或者: from tensorflow.python.training.training_util import get_global_step [as 别名]
def begin(self):
self._global_step_tensor = training_util.get_global_step()
if self._global_step_tensor is None:
raise RuntimeError("Global step should be created to use StopAtStepHook.")
示例7: end
# 需要导入模块: from tensorflow.python.training import training_util [as 别名]
# 或者: from tensorflow.python.training.training_util import get_global_step [as 别名]
def end(self, session):
last_step = session.run(training_util.get_global_step())
if last_step != self._timer.last_triggered_step():
self._save(last_step, session)
for l in self._listeners:
l.end(session, last_step)
示例8: begin
# 需要导入模块: from tensorflow.python.training import training_util [as 别名]
# 或者: from tensorflow.python.training.training_util import get_global_step [as 别名]
def begin(self):
self._next_step = None
self._global_step_tensor = training_util.get_global_step()
if self._global_step_tensor is None:
raise RuntimeError(
"Global step should be created to use ProfilerHook.")
示例9: compute_gradients
# 需要导入模块: from tensorflow.python.training import training_util [as 别名]
# 或者: from tensorflow.python.training.training_util import get_global_step [as 别名]
def compute_gradients(self, loss, *args, **kwargs):
# Record current global step for worker.
with ops.colocate_with(loss):
self._local_step = training_util.get_global_step() + 0
with ops.control_dependencies([self._local_step]):
loss = gen_array_ops.identity(loss)
return self._opt.compute_gradients(loss, *args, **kwargs)
示例10: create_global_step
# 需要导入模块: from tensorflow.python.training import training_util [as 别名]
# 或者: from tensorflow.python.training.training_util import get_global_step [as 别名]
def create_global_step(graph=None):
"""Create global step tensor in graph.
Args:
graph: The graph in which to create the global step. If missing, use default
graph.
Returns:
Global step tensor.
Raises:
ValueError: if global step key is already defined.
"""
graph = ops.get_default_graph() if graph is None else graph
if get_global_step(graph) is not None:
raise ValueError('"global_step" already exists.')
# Create in proper graph and base name_scope.
with graph.as_default() as g, g.name_scope(None):
collections = [ops.GraphKeys.GLOBAL_VARIABLES, ops.GraphKeys.GLOBAL_STEP]
return variable(
ops.GraphKeys.GLOBAL_STEP,
shape=[],
dtype=dtypes.int64,
initializer=init_ops.zeros_initializer(),
trainable=False,
collections=collections)
示例11: get_or_create_global_step
# 需要导入模块: from tensorflow.python.training import training_util [as 别名]
# 或者: from tensorflow.python.training.training_util import get_global_step [as 别名]
def get_or_create_global_step(graph=None):
"""Returns and create (if necessary) the global step variable.
Args:
graph: The graph in which to create the global step. If missing, use default
graph.
Returns:
the tensor representing the global step variable.
"""
graph = ops.get_default_graph() if graph is None else graph
globalstep = get_global_step(graph)
if globalstep is None:
globalstep = create_global_step(graph)
return globalstep
示例12: begin
# 需要导入模块: from tensorflow.python.training import training_util [as 别名]
# 或者: from tensorflow.python.training.training_util import get_global_step [as 别名]
def begin(self):
self._global_step_tensor = training_util.get_global_step()
if self._global_step_tensor is None:
raise RuntimeError("Global step should be created to use UpdateGlobalStepHook.")
ops.get_default_graph()._unsafe_unfinalize()
self._updated_global_step = state_ops.assign_add(self._global_step_tensor, 1, use_locking=True)
示例13: _create_global_step
# 需要导入模块: from tensorflow.python.training import training_util [as 别名]
# 或者: from tensorflow.python.training.training_util import get_global_step [as 别名]
def _create_global_step(graph):
graph = graph or ops.get_default_graph()
if training.get_global_step(graph) is not None:
raise ValueError('"global_step" already exists.')
# Create in proper graph and base name_scope.
with graph.as_default() as g, g.name_scope(None):
return variable_scope.get_variable(
ops.GraphKeys.GLOBAL_STEP,
shape=[],
dtype=dtypes.int64,
initializer=init_ops.zeros_initializer(),
trainable=False,
use_resource=True,
collections=[ops.GraphKeys.GLOBAL_VARIABLES, ops.GraphKeys.GLOBAL_STEP])
示例14: begin
# 需要导入模块: from tensorflow.python.training import training_util [as 别名]
# 或者: from tensorflow.python.training.training_util import get_global_step [as 别名]
def begin(self):
self._global_step_tensor = training_util.get_global_step()
if self._global_step_tensor is None:
raise RuntimeError('Global step should be created.')
self._iterations_per_loop_var = _create_or_get_iterations_per_loop()
示例15: begin
# 需要导入模块: from tensorflow.python.training import training_util [as 别名]
# 或者: from tensorflow.python.training.training_util import get_global_step [as 别名]
def begin(self):
self._global_step_tensor = training_util.get_global_step()
if self._global_step_tensor is None:
raise RuntimeError(
'Global step should be created to use StepCounterHook.')