本文整理汇总了Python中tensorflow.python.training.training.get_global_step方法的典型用法代码示例。如果您正苦于以下问题:Python training.get_global_step方法的具体用法?Python training.get_global_step怎么用?Python training.get_global_step使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.python.training.training
的用法示例。
在下文中一共展示了training.get_global_step方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _create_global_step
# 需要导入模块: from tensorflow.python.training import training [as 别名]
# 或者: from tensorflow.python.training.training import get_global_step [as 别名]
def _create_global_step(graph):
graph = graph or ops.get_default_graph()
if training.get_global_step(graph) is not None:
raise ValueError('"global_step" already exists.')
# Create in proper graph and base name_scope.
with graph.as_default() as g, g.name_scope(None):
return variable_scope.get_variable(
ops.GraphKeys.GLOBAL_STEP,
shape=[],
dtype=dtypes.int64,
initializer=init_ops.zeros_initializer(),
trainable=False,
use_resource=True,
collections=[ops.GraphKeys.GLOBAL_VARIABLES, ops.GraphKeys.GLOBAL_STEP])
示例2: begin
# 需要导入模块: from tensorflow.python.training import training [as 别名]
# 或者: from tensorflow.python.training.training import get_global_step [as 别名]
def begin(self):
self._global_step_tensor = training_util.get_global_step()
if self._global_step_tensor is None:
raise RuntimeError('Global step should be created.')
self._iterations_per_loop_var = _create_or_get_iterations_per_loop()
示例3: _create_and_assert_global_step
# 需要导入模块: from tensorflow.python.training import training [as 别名]
# 或者: from tensorflow.python.training.training import get_global_step [as 别名]
def _create_and_assert_global_step(self, graph):
"""Creates and asserts properties of the global step.
Args:
graph: The graph in which to create the global step tensor.
Returns:
The global step `Tensor`.
"""
step = self._create_global_step(graph)
assert step == training.get_global_step()
assert step.dtype.is_integer
return step
示例4: _create_and_assert_global_step
# 需要导入模块: from tensorflow.python.training import training [as 别名]
# 或者: from tensorflow.python.training.training import get_global_step [as 别名]
def _create_and_assert_global_step(self, graph):
"""Creates and asserts properties of the global step.
Args:
graph: The graph in which to create the global step tensor.
Returns:
The global step `Tensor`.
"""
step = self._create_global_step(graph)
assert step == training.get_global_step()
assert step.dtype.is_integer
return step
开发者ID:PacktPublishing,项目名称:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代码行数:15,代码来源:estimator.py
示例5: _create_or_get_iterations_per_loop
# 需要导入模块: from tensorflow.python.training import training [as 别名]
# 或者: from tensorflow.python.training.training import get_global_step [as 别名]
def _create_or_get_iterations_per_loop():
"""Creates or gets the iterations_per_loop variable.
In TPUEstimator, the user provided computation, the model_fn, is wrapped
inside a tf.while_loop for peak performance. The iterations of the loop are
specified by this variable, which adjusts its value on the CPU after each TPU
program execution and before the next TPU execution.
The purpose of using a variable, rather then a constant, is to allow
TPUEstimator adapt the TPU training iterations according to the final steps
specified by users. For example, if the user sets the iterations_per_loop as 4
in TPUConfig and steps as 10 in TPUEstimator.train(), the iterations_per_loop
variable will have the following value before each TPU training.
- 1-th TPU execution: iterations_per_loop = 4
- 2-th TPU execution: iterations_per_loop = 4
- 3-th TPU execution: iterations_per_loop = 2
As model_fn increases the global step once per train_op invocation, the global
step is 10 after all TPU executions, matching the steps=10 inputs passed in by
users.
Returns:
A TF non-trainable resource variable.
Raises:
RuntimeError: If multi iterations_per_loop variables were found.
"""
graph = ops.get_default_graph()
collection_name = '{}_{}'.format(_TPU_ESTIMATOR, _ITERATIONS_PER_LOOP_VAR)
iter_vars = graph.get_collection(collection_name)
if len(iter_vars) == 1:
return iter_vars[0]
elif len(iter_vars) > 1:
raise RuntimeError('Multiple iterations_per_loop_var in collection.')
with ops.colocate_with(training_util.get_global_step()):
with variable_scope.variable_scope(
_TPU_ESTIMATOR, reuse=variable_scope.AUTO_REUSE):
return variable_scope.get_variable(
_ITERATIONS_PER_LOOP_VAR,
initializer=init_ops.zeros_initializer(),
shape=[],
dtype=dtypes.int32,
trainable=False,
collections=[collection_name, ops.GraphKeys.LOCAL_VARIABLES],
use_resource=True)