当前位置: 首页>>代码示例>>Python>>正文


Python queue_runner.QueueRunner方法代码示例

本文整理汇总了Python中tensorflow.python.training.queue_runner.QueueRunner方法的典型用法代码示例。如果您正苦于以下问题:Python queue_runner.QueueRunner方法的具体用法?Python queue_runner.QueueRunner怎么用?Python queue_runner.QueueRunner使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow.python.training.queue_runner的用法示例。


在下文中一共展示了queue_runner.QueueRunner方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: prefetch_op

# 需要导入模块: from tensorflow.python.training import queue_runner [as 别名]
# 或者: from tensorflow.python.training.queue_runner import QueueRunner [as 别名]
def prefetch_op(self):
    """The op used to prefetch new data into the state saver.

    Running it once enqueues one new input example into the state saver.
    The first time this gets called, it additionally creates the prefetch_op.
    Subsequent calls simply return the previously created `prefetch_op`.

    It should be run in a separate thread via e.g. a `QueueRunner`.

    Returns:
      An `Operation` that performs prefetching.
    """
    if not self._prefetch_op:
      with ops.name_scope(None), ops.name_scope(
          self._scope, values=[self._barrier.barrier_ref]):
        self._create_prefetch_op()
    return self._prefetch_op 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:19,代码来源:sequence_queueing_state_saver.py

示例2: _add_remote_queue_runner

# 需要导入模块: from tensorflow.python.training import queue_runner [as 别名]
# 或者: from tensorflow.python.training.queue_runner import QueueRunner [as 别名]
def _add_remote_queue_runner(self, queue, enq_ops):
    """Adds a remote queue runner to the graph.

    These queue runners differ from the standard in two ways: First,
    they never close their queue. Second, they are added to the
    `Feeder.REMOTE_QUEUE_RUNNERS` collection, rather than
    `ops.GraphKeys.QUEUE_RUNNERS`, so they can be started/stopped
    seperately.

    Args:
      queue: The queue.
      enq_ops: A list of ops which perform enqueues (each on its own thread).
    """

    runner = queue_runner.QueueRunner(
        queue,
        enq_ops,
        cancel_op=self._fake_op,
        close_op=self._fake_op)
    queue_runner.add_queue_runner(
        runner, collection=Feeder.REMOTE_QUEUE_RUNNERS) 
开发者ID:abhisuri97,项目名称:auto-alt-text-lambda-api,代码行数:23,代码来源:feeder.py

示例3: get_chief_queue_runner

# 需要导入模块: from tensorflow.python.training import queue_runner [as 别名]
# 或者: from tensorflow.python.training.queue_runner import QueueRunner [as 别名]
def get_chief_queue_runner(self):
    """Returns the QueueRunner for the chief to execute.

    This includes the operations to synchronize replicas: aggregate gradients,
    apply to variables, increment global step, insert tokens to token queue.

    Note that this can only be called after calling apply_gradients() which
    actually generates this queuerunner.

    Returns:
      A `QueueRunner` for chief to execute.

    Raises:
      ValueError: If this is called before apply_gradients().
    """
    if self._gradients_applied is False:
      raise ValueError("Should be called after apply_gradients().")

    return self._chief_queue_runner 
开发者ID:tobegit3hub,项目名称:deep_image_model,代码行数:21,代码来源:sync_replicas_optimizer.py

示例4: range_input_producer

# 需要导入模块: from tensorflow.python.training import queue_runner [as 别名]
# 或者: from tensorflow.python.training.queue_runner import QueueRunner [as 别名]
def range_input_producer(limit, num_epochs=None, shuffle=True, seed=None,
                         capacity=32, shared_name=None, name=None):
  """Produces the integers from 0 to limit-1 in a queue.

  Note: if `num_epochs` is not `None`, this function creates local counter
  `epochs`. Use `local_variables_initializer()` to initialize local variables.

  Args:
    limit: An int32 scalar tensor.
    num_epochs: An integer (optional). If specified, `range_input_producer`
      produces each integer `num_epochs` times before generating an
      OutOfRange error. If not specified, `range_input_producer` can cycle
      through the integers an unlimited number of times.
    shuffle: Boolean. If true, the integers are randomly shuffled within each
      epoch.
    seed: An integer (optional). Seed used if shuffle == True.
    capacity: An integer. Sets the queue capacity.
    shared_name: (optional). If set, this queue will be shared under the given
      name across multiple sessions.
    name: A name for the operations (optional).

  Returns:
    A Queue with the output integers.  A `QueueRunner` for the Queue
    is added to the current `Graph`'s `QUEUE_RUNNER` collection.
  """
  with ops.name_scope(name, "input_producer", [limit]) as name:
    range_tensor = math_ops.range(limit)
    return input_producer(
        range_tensor, [], num_epochs, shuffle, seed, capacity,
        shared_name, "fraction_of_%d_full" % capacity, name) 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:32,代码来源:input.py

示例5: _enqueue_join

# 需要导入模块: from tensorflow.python.training import queue_runner [as 别名]
# 或者: from tensorflow.python.training.queue_runner import QueueRunner [as 别名]
def _enqueue_join(queue, tensor_list_list, enqueue_many, keep_input):
  """Enqueue `tensor_list_list` in `queue`."""
  if enqueue_many:
    enqueue_fn = queue.enqueue_many
  else:
    enqueue_fn = queue.enqueue
  if keep_input.get_shape().ndims == 1:
    enqueue_ops = [enqueue_fn(_select_which_to_enqueue(x, keep_input))
                   for x in tensor_list_list]
  else:
    enqueue_ops = [_smart_cond(
        keep_input,
        lambda: enqueue_fn(tl),  # pylint:disable=cell-var-from-loop
        control_flow_ops.no_op) for tl in tensor_list_list]
  queue_runner.add_queue_runner(queue_runner.QueueRunner(queue, enqueue_ops)) 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:17,代码来源:input.py

示例6: _enqueue

# 需要导入模块: from tensorflow.python.training import queue_runner [as 别名]
# 或者: from tensorflow.python.training.queue_runner import QueueRunner [as 别名]
def _enqueue(queue, tensor_list, threads, enqueue_many, keep_input):
  """Enqueue `tensor_list` in `queue`."""
  if enqueue_many:
    enqueue_fn = queue.enqueue_many
  else:
    enqueue_fn = queue.enqueue
  if keep_input.get_shape().ndims == 1:
    enqueue_ops = [
        enqueue_fn(_select_which_to_enqueue(tensor_list, keep_input))] * threads
  else:
    enqueue_ops = [_smart_cond(
        keep_input,
        lambda: enqueue_fn(tensor_list),
        control_flow_ops.no_op)] * threads
  queue_runner.add_queue_runner(queue_runner.QueueRunner(queue, enqueue_ops)) 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:17,代码来源:input.py

示例7: read

# 需要导入模块: from tensorflow.python.training import queue_runner [as 别名]
# 或者: from tensorflow.python.training.queue_runner import QueueRunner [as 别名]
def read(self, queue, name=None):
    """Returns the next record (key, value pair) produced by the reader.

    The multiple reader instances are all configured to `read()` from the
    filenames listed in `queue` and enqueue their output into the `common_queue`
    passed to the constructor, and this method returns the next record dequeued
    from that `common_queue`.


    Readers dequeue a work unit from `queue` if necessary (e.g. when a
    reader needs to start reading from a new file since it has finished with
    the previous file).

    A queue runner for enqueing in the `common_queue` is automatically added to
    the TF QueueRunners collection.

    Args:
      queue: A Queue or a mutable string Tensor representing a handle
        to a Queue, with string work items.
      name: A name for the operation (optional).

    Returns:
      The next record (i.e. (key, value pair)) from the common_queue.
    """

    enqueue_ops = []
    for reader in self._readers:
      enqueue_ops.append(self._common_queue.enqueue(reader.read(queue)))

    queue_runner.add_queue_runner(
        queue_runner.QueueRunner(self._common_queue, enqueue_ops))

    return self._common_queue.dequeue(name=name) 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:35,代码来源:parallel_reader.py

示例8: set_fed_tensors

# 需要导入模块: from tensorflow.python.training import queue_runner [as 别名]
# 或者: from tensorflow.python.training.queue_runner import QueueRunner [as 别名]
def set_fed_tensors(self, tensors):
    """Sets fed tensors."""
    enq_op = self._local_q.enqueue(tensors)
    queue_runner.add_queue_runner(queue_runner.QueueRunner(
        self._local_q, [enq_op])) 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:7,代码来源:feeder.py

示例9: set_many_fed_tensors

# 需要导入模块: from tensorflow.python.training import queue_runner [as 别名]
# 或者: from tensorflow.python.training.queue_runner import QueueRunner [as 别名]
def set_many_fed_tensors(self, tensors):
    """Sets batches fed tensors."""
    enq_op = self._local_q.enqueue_many(tensors)
    queue_runner.add_queue_runner(queue_runner.QueueRunner(
        self._local_q, [enq_op])) 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:7,代码来源:feeder.py

示例10: next_batch

# 需要导入模块: from tensorflow.python.training import queue_runner [as 别名]
# 或者: from tensorflow.python.training.queue_runner import QueueRunner [as 别名]
def next_batch(self):
    """The `NextQueuedSequenceBatch` providing access to batched output data.

    Also provides access to the `state` and `save_state` methods.
    The first time this gets called, it additionally prepares barrier reads
    and creates `NextQueuedSequenceBatch` / next_batch objects. Subsequent
    calls simply return the previously created `next_batch`.

    In order to access data in `next_batch` without blocking, the `prefetch_op`
    must have been run at least `batch_size` times (ideally in a separate
    thread, or launched via a `QueueRunner`). After processing a segment in
    `next_batch()`, `batch.save_state()` must be called which is done by the
    state_saving_rnn. Without this call, the dequeue op associated with the SQSS
    will not run.

    Returns:
      A cached `NextQueuedSequenceBatch` instance.
    """
    # This is needed to prevent errors if next_batch is called before
    # prefetch_op is created.
    if not self._prefetch_op:
      with ops.name_scope(None), ops.name_scope(
          self._scope, values=[self._barrier.barrier_ref]):
        self._create_prefetch_op()
    if not self._next_batch:
      with ops.name_scope(None), ops.name_scope(
          self._scope, values=[self._barrier.barrier_ref]):
        self._prepare_barrier_reads()
    return self._next_batch 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:31,代码来源:sequence_queueing_state_saver.py

示例11: range_input_producer

# 需要导入模块: from tensorflow.python.training import queue_runner [as 别名]
# 或者: from tensorflow.python.training.queue_runner import QueueRunner [as 别名]
def range_input_producer(limit, num_epochs=None, shuffle=True, seed=None,
                         capacity=32, shared_name=None, name=None):
  """Produces the integers from 0 to limit-1 in a queue.

  Note: if `num_epochs` is not `None`, this function creates local counter
  `epochs`. Use `local_variables_initializer()` to initialize local variables.

  Args:
    limit: An int32 scalar tensor.
    num_epochs: An integer (optional). If specified, `range_input_producer`
      produces each integer `num_epochs` times before generating an
      OutOfRange error. If not specified, `range_input_producer` can cycle
      through the integers an unlimited number of times.
    shuffle: Boolean. If true, the integers are randomly shuffled within each
      epoch.
    seed: An integer (optional). Seed used if shuffle == True.
    capacity: An integer. Sets the queue capacity.
    shared_name: (optional). If set, this queue will be shared under the given
      name across multiple sessions.
    name: A name for the operations (optional).

  Returns:
    A Queue with the output integers.  A `QueueRunner` for the Queue
    is added to the current `Graph`'s `QUEUE_RUNNER` collection.
  """
  with ops.name_scope(name, "input_producer", [limit]) as name:
    range_tensor = math_ops.range(limit)
    return input_producer(
        range_tensor, [], num_epochs, shuffle, seed, capacity,
        shared_name, name, "fraction_of_%d_full" % capacity) 
开发者ID:abhisuri97,项目名称:auto-alt-text-lambda-api,代码行数:32,代码来源:input.py

示例12: _enqueue_join

# 需要导入模块: from tensorflow.python.training import queue_runner [as 别名]
# 或者: from tensorflow.python.training.queue_runner import QueueRunner [as 别名]
def _enqueue_join(queue, tensor_list_list, enqueue_many, keep_input):
  """Enqueue `tensor_list_list` in `queue`."""
  if enqueue_many:
    enqueue_fn = queue.enqueue_many
  else:
    enqueue_fn = queue.enqueue
  if keep_input is None:
    enqueue_ops = [enqueue_fn(tl) for tl in tensor_list_list]
  else:
    enqueue_ops = [control_flow_ops.cond(
        keep_input,
        lambda: enqueue_fn(tl),
        control_flow_ops.no_op) for tl in tensor_list_list]
  queue_runner.add_queue_runner(queue_runner.QueueRunner(queue, enqueue_ops)) 
开发者ID:abhisuri97,项目名称:auto-alt-text-lambda-api,代码行数:16,代码来源:input.py

示例13: _enqueue

# 需要导入模块: from tensorflow.python.training import queue_runner [as 别名]
# 或者: from tensorflow.python.training.queue_runner import QueueRunner [as 别名]
def _enqueue(queue, tensor_list, threads, enqueue_many, keep_input):
  """Enqueue `tensor_list` in `queue`."""
  if enqueue_many:
    enqueue_fn = queue.enqueue_many
  else:
    enqueue_fn = queue.enqueue
  if keep_input is None:
    enqueue_ops = [enqueue_fn(tensor_list)] * threads
  else:
    enqueue_ops = [control_flow_ops.cond(
        keep_input,
        lambda: enqueue_fn(tensor_list),
        control_flow_ops.no_op)] * threads
  queue_runner.add_queue_runner(queue_runner.QueueRunner(queue, enqueue_ops)) 
开发者ID:abhisuri97,项目名称:auto-alt-text-lambda-api,代码行数:16,代码来源:input.py

示例14: _configure_readers_by

# 需要导入模块: from tensorflow.python.training import queue_runner [as 别名]
# 或者: from tensorflow.python.training.queue_runner import QueueRunner [as 别名]
def _configure_readers_by(self, queue):
    enqueue_ops = []
    for reader in self._readers:
      enqueue_ops.append(self._common_queue.enqueue(reader.read(queue)))

    queue_runner.add_queue_runner(
        queue_runner.QueueRunner(self._common_queue, enqueue_ops)) 
开发者ID:google-research,项目名称:tf-slim,代码行数:9,代码来源:parallel_reader.py

示例15: _enqueue_join

# 需要导入模块: from tensorflow.python.training import queue_runner [as 别名]
# 或者: from tensorflow.python.training.queue_runner import QueueRunner [as 别名]
def _enqueue_join(queue, tensor_list_list, enqueue_many, keep_input):
  """Enqueue `tensor_list_list` in `queue`."""
  if enqueue_many:
    enqueue_fn = queue.enqueue_many
  else:
    enqueue_fn = queue.enqueue
  if keep_input.shape.ndims == 1:
    enqueue_ops = [enqueue_fn(_select_which_to_enqueue(x, keep_input))
                   for x in tensor_list_list]
  else:
    enqueue_ops = [_smart_cond(
        keep_input,
        lambda: enqueue_fn(tl),  # pylint:disable=cell-var-from-loop
        control_flow_ops.no_op) for tl in tensor_list_list]
  queue_runner.add_queue_runner(queue_runner.QueueRunner(queue, enqueue_ops)) 
开发者ID:PacktPublishing,项目名称:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代码行数:17,代码来源:input.py


注:本文中的tensorflow.python.training.queue_runner.QueueRunner方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。