当前位置: 首页>>代码示例>>Python>>正文


Python basic_session_run_hooks.StepCounterHook方法代码示例

本文整理汇总了Python中tensorflow.python.training.basic_session_run_hooks.StepCounterHook方法的典型用法代码示例。如果您正苦于以下问题:Python basic_session_run_hooks.StepCounterHook方法的具体用法?Python basic_session_run_hooks.StepCounterHook怎么用?Python basic_session_run_hooks.StepCounterHook使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow.python.training.basic_session_run_hooks的用法示例。


在下文中一共展示了basic_session_run_hooks.StepCounterHook方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: MonitoredTrainingSession

# 需要导入模块: from tensorflow.python.training import basic_session_run_hooks [as 别名]
# 或者: from tensorflow.python.training.basic_session_run_hooks import StepCounterHook [as 别名]
def MonitoredTrainingSession(master='',  # pylint: disable=invalid-name
                             is_chief=True,
                             checkpoint_dir=None,
                             hooks=None,
                             scaffold=None,
                             config=None):
  """Creates a `MonitoredSession` for training.

  For a chief, this utility sets proper session initializer/restorer. It also
  creates hooks related to checkpoint and summary saving. For workers, this
  utility sets proper session creator which waits for the chief to
  inialize/restore.


  Args:
    master: `String` the TensorFlow master to use.
    is_chief: If `True`, it will take care of initialization and recovery the
      underlying TensorFlow session. If `False`, it will wait on a chief to
      initialize or recover the TensorFlow session.
    checkpoint_dir: A string.  Optional path to a directory where to restore
      variables.
    hooks: Optional list of `SessionRunHook` objects.
    scaffold: A `Scaffold` used for gathering or building supportive ops. If
      not specified, a default one is created. It's used to finalize the graph.
    config: `ConfigProto` proto used to configure the session.

  Returns:
    A `MonitoredSession` object.
  """
  hooks = hooks or []
  scaffold = scaffold or Scaffold()
  if not is_chief:
    session_creator = WorkerSessionCreator(
        scaffold=scaffold, master=master, config=config)
  else:
    session_creator = ChiefSessionCreator(
        scaffold=scaffold,
        checkpoint_dir=checkpoint_dir,
        master=master,
        config=config)
    hooks.extend([
        basic_session_run_hooks.StepCounterHook(output_dir=checkpoint_dir),
        basic_session_run_hooks.SummarySaverHook(
            scaffold=scaffold, save_steps=100, output_dir=checkpoint_dir),
        basic_session_run_hooks.CheckpointSaverHook(
            checkpoint_dir, save_secs=600, scaffold=scaffold),
    ])

  return MonitoredSession(session_creator=session_creator, hooks=hooks) 
开发者ID:tobegit3hub,项目名称:deep_image_model,代码行数:51,代码来源:monitored_session.py

示例2: test_estimator_with_strategy_hooks

# 需要导入模块: from tensorflow.python.training import basic_session_run_hooks [as 别名]
# 或者: from tensorflow.python.training.basic_session_run_hooks import StepCounterHook [as 别名]
def test_estimator_with_strategy_hooks(self, distribution,
                                         use_train_and_evaluate):
    config = run_config.RunConfig(eval_distribute=distribution)

    def _input_map_fn(tensor):
      return {'feature': tensor}, tensor

    def input_fn():
      return dataset_ops.Dataset.from_tensors(
          [1.]).repeat(10).batch(5).map(_input_map_fn)

    def model_fn(features, labels, mode):
      del features, labels
      global_step = training_util.get_global_step()
      if mode == model_fn_lib.ModeKeys.TRAIN:
        train_hook1 = basic_session_run_hooks.StepCounterHook(
            every_n_steps=1, output_dir=self.get_temp_dir())
        train_hook2 = tf.compat.v1.test.mock.MagicMock(
            wraps=tf.compat.v1.train.SessionRunHook(),
            spec=tf.compat.v1.train.SessionRunHook)
        return model_fn_lib.EstimatorSpec(
            mode,
            loss=tf.constant(1.),
            train_op=global_step.assign_add(1),
            training_hooks=[train_hook1, train_hook2])
      if mode == model_fn_lib.ModeKeys.EVAL:
        eval_hook1 = basic_session_run_hooks.StepCounterHook(
            every_n_steps=1, output_dir=self.get_temp_dir())
        eval_hook2 = tf.compat.v1.test.mock.MagicMock(
            wraps=tf.compat.v1.train.SessionRunHook(),
            spec=tf.compat.v1.train.SessionRunHook)
        return model_fn_lib.EstimatorSpec(
            mode=mode,
            loss=tf.constant(1.),
            evaluation_hooks=[eval_hook1, eval_hook2])
    num_steps = 10
    estimator = estimator_lib.EstimatorV2(
        model_fn=model_fn, model_dir=self.get_temp_dir(), config=config)
    if use_train_and_evaluate:
      training.train_and_evaluate(
          estimator, training.TrainSpec(input_fn, max_steps=num_steps),
          training.EvalSpec(input_fn))
    else:
      estimator.train(input_fn, steps=num_steps)
      estimator.evaluate(input_fn, steps=num_steps) 
开发者ID:tensorflow,项目名称:estimator,代码行数:47,代码来源:distribute_strategy_estimator_integration_test.py


注:本文中的tensorflow.python.training.basic_session_run_hooks.StepCounterHook方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。