本文整理汇总了Python中tensorflow.python.saved_model.signature_def_utils.predict_signature_def方法的典型用法代码示例。如果您正苦于以下问题:Python signature_def_utils.predict_signature_def方法的具体用法?Python signature_def_utils.predict_signature_def怎么用?Python signature_def_utils.predict_signature_def使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.python.saved_model.signature_def_utils
的用法示例。
在下文中一共展示了signature_def_utils.predict_signature_def方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: export_h5_to_pb
# 需要导入模块: from tensorflow.python.saved_model import signature_def_utils [as 别名]
# 或者: from tensorflow.python.saved_model.signature_def_utils import predict_signature_def [as 别名]
def export_h5_to_pb(path_to_h5, export_path):
# Set the learning phase to Test since the model is already trained.
K.set_learning_phase(0)
# Load the Keras model
keras_model = load_model(path_to_h5)
# Build the Protocol Buffer SavedModel at 'export_path'
builder = saved_model_builder.SavedModelBuilder(export_path)
# Create prediction signature to be used by TensorFlow Serving Predict API
signature = predict_signature_def(inputs={"images": keras_model.input},
outputs={"scores": keras_model.output})
with K.get_session() as sess:
# Save the meta graph and the variables
builder.add_meta_graph_and_variables(sess=sess, tags=[tag_constants.SERVING],
signature_def_map={"predict": signature})
builder.save()
示例2: export_h5_to_pb
# 需要导入模块: from tensorflow.python.saved_model import signature_def_utils [as 别名]
# 或者: from tensorflow.python.saved_model.signature_def_utils import predict_signature_def [as 别名]
def export_h5_to_pb(path_to_h5, export_path):
# Set the learning phase to Test since the model is already trained.
K.set_learning_phase(0)
# Load the Keras model
keras_model = load_model(path_to_h5)
# Build the Protocol Buffer SavedModel at 'export_path'
builder = saved_model_builder.SavedModelBuilder(export_path)
# Create prediction signature to be used by TensorFlow Serving Predict API
signature = predict_signature_def(inputs={ "http": keras_model.input},
outputs={"probability": keras_model.output})
with K.get_session() as sess:
# Save the meta graph and the variables
builder.add_meta_graph_and_variables(sess=sess, tags=[tag_constants.SERVING],
signature_def_map={"predict": signature})
builder.save()
示例3: as_signature_def
# 需要导入模块: from tensorflow.python.saved_model import signature_def_utils [as 别名]
# 或者: from tensorflow.python.saved_model.signature_def_utils import predict_signature_def [as 别名]
def as_signature_def(self, receiver_tensors):
return signature_def_utils.predict_signature_def(receiver_tensors,
self.outputs)
示例4: testPredictionSignatureDef
# 需要导入模块: from tensorflow.python.saved_model import signature_def_utils [as 别名]
# 或者: from tensorflow.python.saved_model.signature_def_utils import predict_signature_def [as 别名]
def testPredictionSignatureDef(self):
input1 = constant_op.constant("a", name="input-1")
input2 = constant_op.constant("b", name="input-2")
output1 = constant_op.constant("c", name="output-1")
output2 = constant_op.constant("d", name="output-2")
signature_def = signature_def_utils.predict_signature_def({
"input-1": input1,
"input-2": input2
}, {"output-1": output1,
"output-2": output2})
self.assertEqual(signature_constants.PREDICT_METHOD_NAME,
signature_def.method_name)
# Check inputs in signature def.
self.assertEqual(2, len(signature_def.inputs))
input1_tensor_info_actual = (signature_def.inputs["input-1"])
self.assertEqual("input-1:0", input1_tensor_info_actual.name)
self.assertEqual(types_pb2.DT_STRING, input1_tensor_info_actual.dtype)
self.assertEqual(0, len(input1_tensor_info_actual.tensor_shape.dim))
input2_tensor_info_actual = (signature_def.inputs["input-2"])
self.assertEqual("input-2:0", input2_tensor_info_actual.name)
self.assertEqual(types_pb2.DT_STRING, input2_tensor_info_actual.dtype)
self.assertEqual(0, len(input2_tensor_info_actual.tensor_shape.dim))
# Check outputs in signature def.
self.assertEqual(2, len(signature_def.outputs))
output1_tensor_info_actual = (signature_def.outputs["output-1"])
self.assertEqual("output-1:0", output1_tensor_info_actual.name)
self.assertEqual(types_pb2.DT_STRING, output1_tensor_info_actual.dtype)
self.assertEqual(0, len(output1_tensor_info_actual.tensor_shape.dim))
output2_tensor_info_actual = (signature_def.outputs["output-2"])
self.assertEqual("output-2:0", output2_tensor_info_actual.name)
self.assertEqual(types_pb2.DT_STRING, output2_tensor_info_actual.dtype)
self.assertEqual(0, len(output2_tensor_info_actual.tensor_shape.dim))
示例5: export
# 需要导入模块: from tensorflow.python.saved_model import signature_def_utils [as 别名]
# 或者: from tensorflow.python.saved_model.signature_def_utils import predict_signature_def [as 别名]
def export(self, last_checkpoint, output_dir):
"""Builds a prediction graph and xports the model.
Args:
last_checkpoint: Path to the latest checkpoint file from training.
output_dir: Path to the folder to be used to output the model.
"""
logging.info('Exporting prediction graph to %s', output_dir)
with tf.Session(graph=tf.Graph()) as sess:
# Build and save prediction meta graph and trained variable values.
inputs, outputs = self.build_prediction_graph()
signature_def_map = {
'serving_default': signature_def_utils.predict_signature_def(inputs, outputs)
}
init_op = tf.global_variables_initializer()
sess.run(init_op)
self.restore_from_checkpoint(sess, self.inception_checkpoint_file,
last_checkpoint)
init_op_serving = control_flow_ops.group(
variables.local_variables_initializer(),
tf.tables_initializer())
builder = saved_model_builder.SavedModelBuilder(output_dir)
builder.add_meta_graph_and_variables(
sess, [tag_constants.SERVING],
signature_def_map=signature_def_map,
legacy_init_op=init_op_serving)
builder.save(False)
示例6: build_standardized_signature_def
# 需要导入模块: from tensorflow.python.saved_model import signature_def_utils [as 别名]
# 或者: from tensorflow.python.saved_model.signature_def_utils import predict_signature_def [as 别名]
def build_standardized_signature_def(
input_tensors, output_tensors, problem_type):
"""Build a SignatureDef using problem type and input and output Tensors.
Note that this delegates the actual creation of the signatures to methods in
//third_party/tensorflow/python/saved_model/signature_def_utils.py, which may
assign names to the input and output tensors (depending on the problem type)
that are standardized in the context of SavedModel.
Args:
input_tensors: a dict of string key to `Tensor`
output_tensors: a dict of string key to `Tensor`
problem_type: an instance of constants.ProblemType, specifying
classification, regression, etc.
Returns:
A SignatureDef using SavedModel standard keys where possible.
Raises:
ValueError: if input_tensors or output_tensors is None or empty.
"""
if not input_tensors:
raise ValueError('input_tensors must be provided.')
if not output_tensors:
raise ValueError('output_tensors must be provided.')
# Per-method signature_def functions will standardize the keys if possible
if _is_classification_problem(problem_type, input_tensors, output_tensors):
(_, examples), = input_tensors.items()
classes = _get_classification_classes(output_tensors)
scores = _get_classification_scores(output_tensors)
if classes is None and scores is None:
(_, classes), = output_tensors.items()
return signature_def_utils.classification_signature_def(
examples, classes, scores)
elif _is_regression_problem(problem_type, input_tensors, output_tensors):
(_, examples), = input_tensors.items()
(_, predictions), = output_tensors.items()
return signature_def_utils.regression_signature_def(examples, predictions)
else:
return signature_def_utils.predict_signature_def(
input_tensors, output_tensors)
示例7: build_standardized_signature_def
# 需要导入模块: from tensorflow.python.saved_model import signature_def_utils [as 别名]
# 或者: from tensorflow.python.saved_model.signature_def_utils import predict_signature_def [as 别名]
def build_standardized_signature_def(
input_tensors, output_tensors, problem_type):
"""Build a SignatureDef using problem type and input and output Tensors.
Note that this delegates the actual creation of the signatures to methods in
//third_party/tensorflow/python/saved_model/signature_def_utils.py, which may
assign names to the input and output tensors (depending on the problem type)
that are standardized in the context of SavedModel.
Args:
input_tensors: a dict of string key to `Tensor`
output_tensors: a dict of string key to `Tensor`
problem_type: an instance of constants.ProblemType, specifying
classification, regression, etc.
Returns:
A SignatureDef using SavedModel standard keys where possible.
Raises:
ValueError: if input_tensors or output_tensors is None or empty.
"""
if not input_tensors:
raise ValueError('input_tensors must be provided.')
if not output_tensors:
raise ValueError('output_tensors must be provided.')
# Per-method signature_def functions will standardize the keys if possible
if _is_classification_problem(problem_type, input_tensors, output_tensors):
(_, examples), = input_tensors.items()
classes = output_tensors.get(prediction_key.PredictionKey.CLASSES)
scores = _get_classification_scores(output_tensors)
if classes is None and scores is None:
(_, classes), = output_tensors.items()
return signature_def_utils.classification_signature_def(
examples, classes, scores)
elif _is_regression_problem(problem_type, input_tensors, output_tensors):
(_, examples), = input_tensors.items()
(_, predictions), = output_tensors.items()
return signature_def_utils.regression_signature_def(examples, predictions)
else:
return signature_def_utils.predict_signature_def(
input_tensors, output_tensors)