当前位置: 首页>>代码示例>>Python>>正文


Python signature_def_utils.build_signature_def方法代码示例

本文整理汇总了Python中tensorflow.python.saved_model.signature_def_utils.build_signature_def方法的典型用法代码示例。如果您正苦于以下问题:Python signature_def_utils.build_signature_def方法的具体用法?Python signature_def_utils.build_signature_def怎么用?Python signature_def_utils.build_signature_def使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow.python.saved_model.signature_def_utils的用法示例。


在下文中一共展示了signature_def_utils.build_signature_def方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: build_signature

# 需要导入模块: from tensorflow.python.saved_model import signature_def_utils [as 别名]
# 或者: from tensorflow.python.saved_model.signature_def_utils import build_signature_def [as 别名]
def build_signature(inputs, outputs):
  """Build the signature.

  Not using predic_signature_def in saved_model because it is replacing the
  tensor name, b/35900497.

  Args:
    inputs: a dictionary of tensor name to tensor
    outputs: a dictionary of tensor name to tensor
  Returns:
    The signature, a SignatureDef proto.
  """
  signature_inputs = {key: saved_model_utils.build_tensor_info(tensor)
                      for key, tensor in inputs.items()}
  signature_outputs = {key: saved_model_utils.build_tensor_info(tensor)
                       for key, tensor in outputs.items()}

  signature_def = signature_def_utils.build_signature_def(
      signature_inputs, signature_outputs,
      signature_constants.PREDICT_METHOD_NAME)

  return signature_def 
开发者ID:GoogleCloudPlatform,项目名称:cloudml-edge-automation,代码行数:24,代码来源:model.py

示例2: export_model

# 需要导入模块: from tensorflow.python.saved_model import signature_def_utils [as 别名]
# 或者: from tensorflow.python.saved_model.signature_def_utils import build_signature_def [as 别名]
def export_model(self, model_dir, global_step_val, last_checkpoint):
    """Exports the model so that it can used for batch predictions."""

    with self.graph.as_default():
      with tf.Session() as session:
        session.run(tf.global_variables_initializer())
        self.saver.restore(session, last_checkpoint)

        signature = signature_def_utils.build_signature_def(
            inputs=self.inputs,
            outputs=self.outputs,
            method_name=signature_constants.PREDICT_METHOD_NAME)

        signature_map = {signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY: 
                         signature}

        model_builder = saved_model_builder.SavedModelBuilder(model_dir)
        model_builder.add_meta_graph_and_variables(session,
            tags=[tag_constants.SERVING],
            signature_def_map=signature_map,
            clear_devices=True)
        model_builder.save() 
开发者ID:antoine77340,项目名称:Youtube-8M-WILLOW,代码行数:24,代码来源:export_model.py

示例3: export_model

# 需要导入模块: from tensorflow.python.saved_model import signature_def_utils [as 别名]
# 或者: from tensorflow.python.saved_model.signature_def_utils import build_signature_def [as 别名]
def export_model(self, model_dir, global_step_val, last_checkpoint):
    """Exports the model so that it can used for batch predictions."""

    with self.graph.as_default():
      with tf.Session() as session:
        session.run(tf.global_variables_initializer())
        self.saver.restore(session, last_checkpoint)

        signature = signature_def_utils.build_signature_def(
            inputs=self.inputs,
            outputs=self.outputs,
            method_name=signature_constants.PREDICT_METHOD_NAME)

        signature_map = {
            signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY: signature
        }

        model_builder = saved_model_builder.SavedModelBuilder(model_dir)
        model_builder.add_meta_graph_and_variables(
            session,
            tags=[tag_constants.SERVING],
            signature_def_map=signature_map,
            clear_devices=True)
        model_builder.save() 
开发者ID:google,项目名称:youtube-8m,代码行数:26,代码来源:export_model.py

示例4: export_model

# 需要导入模块: from tensorflow.python.saved_model import signature_def_utils [as 别名]
# 或者: from tensorflow.python.saved_model.signature_def_utils import build_signature_def [as 别名]
def export_model(self, model_dir, global_step_val, last_checkpoint):
    """Exports the model so that it can used for batch predictions."""

    with self.graph.as_default():
      with tf.Session() as session:
        session.run(tf.global_variables_initializer())
        self.saver.restore(session, last_checkpoint)

        signature = signature_def_utils.build_signature_def(
            inputs=self.inputs,
            outputs=self.outputs,
            method_name=signature_constants.PREDICT_METHOD_NAME)

        signature_map = {signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY:
                         signature}

        model_builder = saved_model_builder.SavedModelBuilder(model_dir)
        model_builder.add_meta_graph_and_variables(session,
            tags=[tag_constants.SERVING],
            signature_def_map=signature_map,
            clear_devices=True)
        model_builder.save() 
开发者ID:miha-skalic,项目名称:youtube8mchallenge,代码行数:24,代码来源:export_model.py

示例5: save_signature

# 需要导入模块: from tensorflow.python.saved_model import signature_def_utils [as 别名]
# 或者: from tensorflow.python.saved_model.signature_def_utils import build_signature_def [as 别名]
def save_signature(self, directory):

        signature = signature_def_utils.build_signature_def(
            inputs={
                'input':
                saved_model_utils.build_tensor_info(self.input),
                'dropout_rate':
                saved_model_utils.build_tensor_info(self.dropout_rate)
            },
            outputs={
                'output': saved_model_utils.build_tensor_info(self.output)
            },
            method_name=signature_constants.PREDICT_METHOD_NAME)
        signature_map = {
            signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY: signature
        }
        model_builder = saved_model_builder.SavedModelBuilder(directory)
        model_builder.add_meta_graph_and_variables(
            self.sess,
            tags=[tag_constants.SERVING],
            signature_def_map=signature_map,
            clear_devices=True)
        model_builder.save(as_text=False) 
开发者ID:leimao,项目名称:Frozen_Graph_TensorFlow,代码行数:25,代码来源:cnn.py

示例6: export_model

# 需要导入模块: from tensorflow.python.saved_model import signature_def_utils [as 别名]
# 或者: from tensorflow.python.saved_model.signature_def_utils import build_signature_def [as 别名]
def export_model(self, model_dir, global_step_val, last_checkpoint):
        """Exports the model so that it can used for batch predictions."""
        with self.graph.as_default():
            with tf.Session() as session:
                session.run(tf.global_variables_initializer())
                self.saver.restore(session, last_checkpoint)

                signature = signature_def_utils.build_signature_def(
                    inputs=self.inputs,
                    outputs=self.outputs,
                    method_name=signature_constants.PREDICT_METHOD_NAME)

                signature_map = {signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY:
                                     signature}

                model_builder = saved_model_builder.SavedModelBuilder(model_dir)
                model_builder.add_meta_graph_and_variables(session,
                                                           tags=[tag_constants.SERVING],
                                                           signature_def_map=signature_map,
                                                           clear_devices=True)
                model_builder.save() 
开发者ID:pomonam,项目名称:AttentionCluster,代码行数:23,代码来源:export_model.py

示例7: export_model

# 需要导入模块: from tensorflow.python.saved_model import signature_def_utils [as 别名]
# 或者: from tensorflow.python.saved_model.signature_def_utils import build_signature_def [as 别名]
def export_model(self, model_dir, global_step_val, last_checkpoint):
    """Exports the model so that it can used for batch predictions."""

    with self.graph.as_default():
      with tf.Session(config=self.config) as session:
        session.run(tf.global_variables_initializer())
        self.saver.restore(session, last_checkpoint)

        signature = signature_def_utils.build_signature_def(
            inputs=self.inputs,
            outputs=self.outputs,
            method_name=signature_constants.PREDICT_METHOD_NAME)

        signature_map = {signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY:
                         signature}

        model_builder = saved_model_builder.SavedModelBuilder(model_dir)
        model_builder.add_meta_graph_and_variables(session,
            tags=[tag_constants.SERVING],
            signature_def_map=signature_map,
            clear_devices=True)
        model_builder.save() 
开发者ID:mpekalski,项目名称:Y8M,代码行数:24,代码来源:export_model.py

示例8: export

# 需要导入模块: from tensorflow.python.saved_model import signature_def_utils [as 别名]
# 或者: from tensorflow.python.saved_model.signature_def_utils import build_signature_def [as 别名]
def export(self, last_checkpoint, output_dir):
    """Builds a prediction graph and xports the model.

    Args:
      last_checkpoint: The latest checkpoint from training.
      output_dir: Path to the folder to be used to output the model.
    """
    logging.info('Exporting prediction graph to %s', output_dir)
    with tf.Session(graph=tf.Graph()) as sess:
      # Build and save prediction meta graph and trained variable values.
      input_signatures, output_signatures = self.build_prediction_graph()
      # Remove this if once Tensorflow 0.12 is standard.
      try:
        init_op = tf.global_variables_initializer()
      except AttributeError:
        init_op = tf.initialize_all_variables()
      sess.run(init_op)
      trained_saver = tf.train.Saver()
      trained_saver.restore(sess, last_checkpoint)

      predict_signature_def = signature_def_utils.build_signature_def(
          input_signatures, output_signatures,
          signature_constants.PREDICT_METHOD_NAME)
      # Create a saver for writing SavedModel training checkpoints.
      build = builder.SavedModelBuilder(
          os.path.join(output_dir, 'saved_model'))
      build.add_meta_graph_and_variables(
          sess, [tag_constants.SERVING],
          signature_def_map={
              signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY:
                  predict_signature_def
          },
          assets_collection=tf.get_collection(tf.GraphKeys.ASSET_FILEPATHS))
      build.save() 
开发者ID:GoogleCloudPlatform,项目名称:cloudml-samples,代码行数:36,代码来源:model.py

示例9: testBuildSignatureDef

# 需要导入模块: from tensorflow.python.saved_model import signature_def_utils [as 别名]
# 或者: from tensorflow.python.saved_model.signature_def_utils import build_signature_def [as 别名]
def testBuildSignatureDef(self):
    x = array_ops.placeholder(dtypes.float32, 1, name="x")
    x_tensor_info = utils.build_tensor_info(x)
    inputs = dict()
    inputs["foo-input"] = x_tensor_info

    y = array_ops.placeholder(dtypes.float32, name="y")
    y_tensor_info = utils.build_tensor_info(y)
    outputs = dict()
    outputs["foo-output"] = y_tensor_info

    signature_def = signature_def_utils.build_signature_def(inputs, outputs,
                                                            "foo-method-name")
    self.assertEqual("foo-method-name", signature_def.method_name)

    # Check inputs in signature def.
    self.assertEqual(1, len(signature_def.inputs))
    x_tensor_info_actual = signature_def.inputs["foo-input"]
    self.assertEqual("x:0", x_tensor_info_actual.name)
    self.assertEqual(types_pb2.DT_FLOAT, x_tensor_info_actual.dtype)
    self.assertEqual(1, len(x_tensor_info_actual.tensor_shape.dim))
    self.assertEqual(1, x_tensor_info_actual.tensor_shape.dim[0].size)

    # Check outputs in signature def.
    self.assertEqual(1, len(signature_def.outputs))
    y_tensor_info_actual = signature_def.outputs["foo-output"]
    self.assertEqual("y:0", y_tensor_info_actual.name)
    self.assertEqual(types_pb2.DT_FLOAT, y_tensor_info_actual.dtype)
    self.assertEqual(0, len(y_tensor_info_actual.tensor_shape.dim)) 
开发者ID:abhisuri97,项目名称:auto-alt-text-lambda-api,代码行数:31,代码来源:signature_def_utils_test.py

示例10: _validate_inputs_tensor_info

# 需要导入模块: from tensorflow.python.saved_model import signature_def_utils [as 别名]
# 或者: from tensorflow.python.saved_model.signature_def_utils import build_signature_def [as 别名]
def _validate_inputs_tensor_info(self, builder, tensor_info):
    with self.test_session(graph=ops.Graph()) as sess:
      self._init_and_validate_variable(sess, "v", 42)

      foo_signature = signature_def_utils.build_signature_def({
          "foo_inputs": tensor_info
      }, dict(), "foo")
      self.assertRaises(
          AssertionError,
          builder.add_meta_graph_and_variables,
          sess, ["foo"],
          signature_def_map={"foo_key": foo_signature}) 
开发者ID:abhisuri97,项目名称:auto-alt-text-lambda-api,代码行数:14,代码来源:saved_model_test.py

示例11: _validate_outputs_tensor_info

# 需要导入模块: from tensorflow.python.saved_model import signature_def_utils [as 别名]
# 或者: from tensorflow.python.saved_model.signature_def_utils import build_signature_def [as 别名]
def _validate_outputs_tensor_info(self, builder, tensor_info):
    with self.test_session(graph=ops.Graph()) as sess:
      self._init_and_validate_variable(sess, "v", 42)

      foo_signature = signature_def_utils.build_signature_def(
          dict(), {"foo_outputs": tensor_info}, "foo")
      self.assertRaises(
          AssertionError,
          builder.add_meta_graph_and_variables,
          sess, ["foo"],
          signature_def_map={"foo_key": foo_signature}) 
开发者ID:abhisuri97,项目名称:auto-alt-text-lambda-api,代码行数:13,代码来源:saved_model_test.py

示例12: export

# 需要导入模块: from tensorflow.python.saved_model import signature_def_utils [as 别名]
# 或者: from tensorflow.python.saved_model.signature_def_utils import build_signature_def [as 别名]
def export(model_version, model_dir, sess, inputs, y_op):
    """导出tensorflow_serving可用的模型(Saved Model方式)(推荐)
    prediction_signature必备的三个参数分别是输入inputs、输出outputs和方法名method_name,如果缺失方法名将会报错:“grpc.framework.interfaces.face.face.AbortionError: AbortionError(code=StatusCode.INTERNAL, details="Expected prediction signature method_name to be one of {tensorflow/serving/predict, tensorflow/serving/classify, tensorflow/serving/regress}. Was: ")”。每一个SavedModel关联着一个独立的checkpoint。每一个图元都绑定一个或多个标签,这些标签用来明确图元被加载的方式。标签只接受两种类型:serve或者train,保存时可以同时包含两个标签。其中tag_constants.SERVING = "serve",tag_constants.TRAINING = "train"。模型用于TensorFlow Serving时,标签必须包含serve类型。如果标签只包含train类型,TensorFlow Serving加载模型时会报错:“E tensorflow_serving/core/aspired_versions_manager.cc:351] Servable {name: default version: 2} cannot be loaded: Not found: Could not find meta graph def matching supplied tags.”。定义signature_def_map时注意定义默认服务签名键,如果缺少则会报错:“grpc.framework.interfaces.face.face.AbortionError: AbortionError(code=StatusCode.FAILED_PRECONDITION, details="Default serving signature key not found.")”。
    """
    if model_version <= 0:
        print('Please specify a positive value for version number.')
        sys.exit()

    path = os.path.dirname(os.path.abspath(model_dir))
    if os.path.isdir(path) == False:
        logging.warning('Path (%s) not exists, making directories...', path)
        os.makedirs(path)

    export_path = os.path.join(
        compat.as_bytes(model_dir),
        compat.as_bytes(str(model_version)))

    if os.path.isdir(export_path) == True:
        logging.warning('Path (%s) exists, removing directories...', export_path)
        shutil.rmtree(export_path)

    builder = saved_model_builder.SavedModelBuilder(export_path)
    tensor_info_x = utils.build_tensor_info(inputs)
    tensor_info_y = utils.build_tensor_info(y_op)

    prediction_signature = signature_def_utils.build_signature_def(
        inputs={'x': tensor_info_x},
        outputs={'y': tensor_info_y},
        method_name=signature_constants.PREDICT_METHOD_NAME)

    builder.add_meta_graph_and_variables(
        sess,
        [tag_constants.SERVING],
        signature_def_map={
            'predict_text': prediction_signature,
            signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY: prediction_signature
        })

    builder.save() 
开发者ID:tensorlayer,项目名称:text-antispam,代码行数:41,代码来源:mlp_classifier.py

示例13: export_saved_model

# 需要导入模块: from tensorflow.python.saved_model import signature_def_utils [as 别名]
# 或者: from tensorflow.python.saved_model.signature_def_utils import build_signature_def [as 别名]
def export_saved_model(sess, export_path, input_tensor, output_tensor):
    from tensorflow.python.saved_model import builder as saved_model_builder
    from tensorflow.python.saved_model import signature_constants
    from tensorflow.python.saved_model import signature_def_utils
    from tensorflow.python.saved_model import tag_constants
    from tensorflow.python.saved_model import utils
    builder = saved_model_builder.SavedModelBuilder(export_path)

    prediction_signature = signature_def_utils.build_signature_def(
        inputs={'images': utils.build_tensor_info(input_tensor)},
        outputs={
            'scores': utils.build_tensor_info(output_tensor)
        },
        method_name=signature_constants.PREDICT_METHOD_NAME)

    legacy_init_op = tf.group(
        tf.tables_initializer(), name='legacy_init_op')
    builder.add_meta_graph_and_variables(
        sess, [tag_constants.SERVING],
        signature_def_map={
            'predict_images':
                prediction_signature,
        },
        legacy_init_op=legacy_init_op)

    builder.save() 
开发者ID:PacktPublishing,项目名称:Machine-Learning-with-TensorFlow-1.x,代码行数:28,代码来源:models.py

示例14: export_model

# 需要导入模块: from tensorflow.python.saved_model import signature_def_utils [as 别名]
# 或者: from tensorflow.python.saved_model.signature_def_utils import build_signature_def [as 别名]
def export_model():
    """Exports the model"""

    trained_checkpoint_prefix = 'linear_regression'

    loaded_graph = tf.Graph()
    with tf.Session(graph=loaded_graph) as sess:
        sess.run(tf.global_variables_initializer())

        # Restore from checkpoint:
        loader = tf.train.import_meta_graph(trained_checkpoint_prefix + '.meta')
        loader.restore(sess, trained_checkpoint_prefix)

        # Add signature:
        graph = tf.get_default_graph()
        inputs = tf.saved_model.utils.build_tensor_info(graph.get_tensor_by_name('X:0'))
        outputs = tf.saved_model.utils.build_tensor_info(graph.get_tensor_by_name('y_model:0'))

        signature = signature_def_utils.build_signature_def(inputs={'X': inputs},
                                                            outputs={'y_model': outputs},
                                                            method_name=signature_constants.PREDICT_METHOD_NAME)

        signature_map = {signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY: signature}

        # Export model:
        builder = tf.saved_model.builder.SavedModelBuilder('./my_model')
        builder.add_meta_graph_and_variables(sess, signature_def_map=signature_map,
                                             tags=[tf.saved_model.tag_constants.SERVING])
        builder.save()


# Export the model: 
开发者ID:PacktPublishing,项目名称:Mastering-OpenCV-4-with-Python,代码行数:34,代码来源:tensorflow_save_and_load_using_model_builder.py

示例15: export_model

# 需要导入模块: from tensorflow.python.saved_model import signature_def_utils [as 别名]
# 或者: from tensorflow.python.saved_model.signature_def_utils import build_signature_def [as 别名]
def export_model():
    """Exports the model"""

    trained_checkpoint_prefix = 'softmax_regression_model_mnist'

    loaded_graph = tf.Graph()
    with tf.Session(graph=loaded_graph) as sess:
        sess.run(tf.global_variables_initializer())

        # Restore from checkpoint
        loader = tf.train.import_meta_graph(trained_checkpoint_prefix + '.meta')
        loader.restore(sess, trained_checkpoint_prefix)

        # Add signature:
        graph = tf.get_default_graph()
        inputs = tf.saved_model.utils.build_tensor_info(graph.get_tensor_by_name('myInput:0'))
        outputs = tf.saved_model.utils.build_tensor_info(graph.get_tensor_by_name('myOutput:0'))

        signature = signature_def_utils.build_signature_def(inputs={'myInput': inputs},
                                                            outputs={'myOutput': outputs},
                                                            method_name=signature_constants.PREDICT_METHOD_NAME)

        signature_map = {signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY: signature}

        # Export model:
        builder = tf.saved_model.builder.SavedModelBuilder('./my_model')
        builder.add_meta_graph_and_variables(sess, signature_def_map=signature_map,
                                             tags=[tf.saved_model.tag_constants.SERVING])
        builder.save()


# Export the model: 
开发者ID:PacktPublishing,项目名称:Mastering-OpenCV-4-with-Python,代码行数:34,代码来源:mnist_tensorflow_save_and_load_model_builder.py


注:本文中的tensorflow.python.saved_model.signature_def_utils.build_signature_def方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。