当前位置: 首页>>代码示例>>Python>>正文


Python loader.load方法代码示例

本文整理汇总了Python中tensorflow.python.saved_model.loader.load方法的典型用法代码示例。如果您正苦于以下问题:Python loader.load方法的具体用法?Python loader.load怎么用?Python loader.load使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow.python.saved_model.loader的用法示例。


在下文中一共展示了loader.load方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: testNoOverwrite

# 需要导入模块: from tensorflow.python.saved_model import loader [as 别名]
# 或者: from tensorflow.python.saved_model.loader import load [as 别名]
def testNoOverwrite(self):
    export_dir = os.path.join(test.get_temp_dir(), "test_no_overwrite")
    builder = saved_model_builder.SavedModelBuilder(export_dir)

    # Graph with a single variable. SavedModel invoked to:
    # - add with weights.
    with self.test_session(graph=ops.Graph()) as sess:
      self._init_and_validate_variable(sess, "v", 42)
      builder.add_meta_graph_and_variables(sess, ["foo"])

    # Save the SavedModel to disk in text format.
    builder.save(as_text=True)

    # Restore the graph with tag "foo", whose variables were saved.
    with self.test_session(graph=ops.Graph()) as sess:
      loader.load(sess, ["foo"], export_dir)
      self.assertEqual(
          42, ops.get_collection(ops.GraphKeys.GLOBAL_VARIABLES)[0].eval())

    # An attempt to create another builder with the same export directory should
    # result in an assertion error.
    self.assertRaises(AssertionError, saved_model_builder.SavedModelBuilder,
                      export_dir) 
开发者ID:abhisuri97,项目名称:auto-alt-text-lambda-api,代码行数:25,代码来源:saved_model_test.py

示例2: testClearDevices

# 需要导入模块: from tensorflow.python.saved_model import loader [as 别名]
# 或者: from tensorflow.python.saved_model.loader import load [as 别名]
def testClearDevices(self):
    export_dir = os.path.join(test.get_temp_dir(), "test_clear_devices")
    builder = saved_model_builder.SavedModelBuilder(export_dir)

    # Specify a device and save a variable.
    ops.reset_default_graph()
    with session.Session(
        target="",
        config=config_pb2.ConfigProto(device_count={"CPU": 2})) as sess:
      with sess.graph.device("/cpu:0"):
        self._init_and_validate_variable(sess, "v", 42)
        builder.add_meta_graph_and_variables(
            sess, [tag_constants.TRAINING], clear_devices=True)

    # Save the SavedModel to disk.
    builder.save()

    # Restore the graph with a single predefined tag whose variables were saved
    # without any device information.
    with self.test_session(graph=ops.Graph()) as sess:
      loader.load(sess, [tag_constants.TRAINING], export_dir)
      self.assertEqual(
          42, ops.get_collection(ops.GraphKeys.GLOBAL_VARIABLES)[0].eval()) 
开发者ID:abhisuri97,项目名称:auto-alt-text-lambda-api,代码行数:25,代码来源:saved_model_test.py

示例3: testNoOverwrite

# 需要导入模块: from tensorflow.python.saved_model import loader [as 别名]
# 或者: from tensorflow.python.saved_model.loader import load [as 别名]
def testNoOverwrite(self):
    export_dir = os.path.join(tf.test.get_temp_dir(), "test_no_overwrite")
    builder = saved_model_builder.SavedModelBuilder(export_dir)

    # Graph with a single variable. SavedModel invoked to:
    # - add with weights.
    with self.test_session(graph=tf.Graph()) as sess:
      self._init_and_validate_variable(sess, "v", 42)
      builder.add_meta_graph_and_variables(sess, ["foo"])

    # Save the SavedModel to disk in text format.
    builder.save(as_text=True)

    # Restore the graph with tag "foo", whose variables were saved.
    with self.test_session(graph=tf.Graph()) as sess:
      loader.load(sess, ["foo"], export_dir)
      self.assertEqual(
          42, tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)[0].eval())

    # An attempt to create another builder with the same export directory should
    # result in an assertion error.
    self.assertRaises(AssertionError, saved_model_builder.SavedModelBuilder,
                      export_dir) 
开发者ID:tobegit3hub,项目名称:deep_image_model,代码行数:25,代码来源:saved_model_test.py

示例4: get_meta_graph_def

# 需要导入模块: from tensorflow.python.saved_model import loader [as 别名]
# 或者: from tensorflow.python.saved_model.loader import load [as 别名]
def get_meta_graph_def(saved_model_dir, tag_set):
  """DEPRECATED: Use saved_model_utils.get_meta_graph_def instead.

  Gets MetaGraphDef from SavedModel. Returns the MetaGraphDef for the given
  tag-set and SavedModel directory.

  Args:
    saved_model_dir: Directory containing the SavedModel to inspect or execute.
    tag_set: Group of tag(s) of the MetaGraphDef to load, in string format,
        separated by ','. For tag-set contains multiple tags, all tags must be
        passed in.

  Raises:
    RuntimeError: An error when the given tag-set does not exist in the
        SavedModel.

  Returns:
    A MetaGraphDef corresponding to the tag-set.
  """
  return saved_model_utils.get_meta_graph_def(saved_model_dir, tag_set) 
开发者ID:PacktPublishing,项目名称:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代码行数:22,代码来源:saved_model_cli.py

示例5: local_predict

# 需要导入模块: from tensorflow.python.saved_model import loader [as 别名]
# 或者: from tensorflow.python.saved_model.loader import load [as 别名]
def local_predict(args):
  """Runs prediction locally."""

  sess = session.Session()
  _ = loader.load(sess, [tag_constants.SERVING], args.model_dir)

  # get the mappings between aliases and tensor names
  # for both inputs and outputs
  input_alias_map = json.loads(sess.graph.get_collection('inputs')[0])
  output_alias_map = json.loads(sess.graph.get_collection('outputs')[0])
  aliases, tensor_names = zip(*output_alias_map.items())

  for input_file in args.input:
    feed_dict = collections.defaultdict(list)
    for line in tf_record.tf_record_iterator(input_file):
      feed_dict[input_alias_map['examples_bytes']].append(line)

    if args.dry_run:
      print('Feed data dict %s to graph and fetch %s' % (
          feed_dict, tensor_names))
    else:
      result = sess.run(fetches=tensor_names, feed_dict=feed_dict)
      for row in zip(*result):
        print(json.dumps(
            {name: (value.tolist() if getattr(value, 'tolist', None) else value)
             for name, value in zip(aliases, row)})) 
开发者ID:GoogleCloudPlatform,项目名称:cloudml-samples,代码行数:28,代码来源:local_predict.py

示例6: get_meta_graph_def

# 需要导入模块: from tensorflow.python.saved_model import loader [as 别名]
# 或者: from tensorflow.python.saved_model.loader import load [as 别名]
def get_meta_graph_def(saved_model_dir, tag_set):
  """Gets MetaGraphDef from SavedModel.

  Returns the MetaGraphDef for the given tag-set and SavedModel directory.

  Args:
    saved_model_dir: Directory containing the SavedModel to inspect or execute.
    tag_set: Group of tag(s) of the MetaGraphDef to load, in string format,
        separated by ','. For tag-set contains multiple tags, all tags must be
        passed in.

  Raises:
    RuntimeError: An error when the given tag-set does not exist in the
        SavedModel.

  Returns:
    A MetaGraphDef corresponding to the tag-set.
  """
  saved_model = reader.read_saved_model(saved_model_dir)
  set_of_tags = set(tag_set.split(','))
  for meta_graph_def in saved_model.meta_graphs:
    if set(meta_graph_def.meta_info_def.tags) == set_of_tags:
      return meta_graph_def

  raise RuntimeError('MetaGraphDef associated with tag-set ' + tag_set +
                     ' could not be found in SavedModel') 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:28,代码来源:saved_model_cli.py

示例7: load_session_bundle_or_saved_model_bundle_from_path

# 需要导入模块: from tensorflow.python.saved_model import loader [as 别名]
# 或者: from tensorflow.python.saved_model.loader import load [as 别名]
def load_session_bundle_or_saved_model_bundle_from_path(export_dir,
                                                        tags=None,
                                                        target="",
                                                        config=None):
  """Load session bundle from the given path.

  The function reads input from the export_dir, constructs the graph data to the
  default graph and restores the parameters for the session created.

  Args:
    export_dir: the directory that contains files exported by exporter.
    tags: Set of string tags to identify the required MetaGraphDef when model is
          saved as SavedModel. These should correspond to the tags used when
          saving the variables using the SavedModel `save()` API.
    target: The execution engine to connect to. See target in tf.Session()
    config: A ConfigProto proto with configuration options. See config in
            tf.Session()

  Returns:
    session: a tensorflow session created from the variable files.
    meta_graph: a meta graph proto saved in the exporter directory.

  Raises:
    RuntimeError: if the required files are missing or contain unrecognizable
    fields, i.e. the exported model is invalid.
  """
  metagraph_def = None
  sess = None
  if loader.maybe_saved_model_directory(export_dir):
    sess = session.Session(target, graph=None, config=config)
    metagraph_def = loader.load(sess, tags, export_dir)
  elif session_bundle.maybe_session_bundle_dir(export_dir):
    sess, metagraph_def = _load_saved_model_from_session_bundle_path(export_dir,
                                                                     target,
                                                                     config)
  else:
    raise RuntimeError("SessionBundle or SavedModelBundle not found at "
                       "specified export location: %s" % export_dir)

  return sess, metagraph_def 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:42,代码来源:bundle_shim.py

示例8: RunModel

# 需要导入模块: from tensorflow.python.saved_model import loader [as 别名]
# 或者: from tensorflow.python.saved_model.loader import load [as 别名]
def RunModel(saved_model_dir, signature_def_key, tag, text, ngrams_list=None):
    saved_model = reader.read_saved_model(saved_model_dir)
    meta_graph =  None
    for meta_graph_def in saved_model.meta_graphs:
        if tag in meta_graph_def.meta_info_def.tags:
            meta_graph = meta_graph_def
            break
    if meta_graph_def is None:
        raise ValueError("Cannot find saved_model with tag" + tag)
    signature_def = signature_def_utils.get_signature_def_by_key(
        meta_graph, signature_def_key)
    text = text_utils.TokenizeText(text)
    ngrams = None
    if ngrams_list is not None:
        ngrams_list = text_utils.ParseNgramsOpts(ngrams_list)
        ngrams = text_utils.GenerateNgrams(text, ngrams_list)
    example = inputs.BuildTextExample(text, ngrams=ngrams)
    example = example.SerializeToString()
    inputs_feed_dict = {
        signature_def.inputs["inputs"].name: [example],
    }
    if signature_def_key == "proba":
        output_key = "scores"
    elif signature_def_key == "embedding":
        output_key = "outputs"
    else:
        raise ValueError("Unrecognised signature_def %s" % (signature_def_key))
    output_tensor = signature_def.outputs[output_key].name
    with tf.Session() as sess:
        loader.load(sess, [tag], saved_model_dir)
        outputs = sess.run(output_tensor,
                           feed_dict=inputs_feed_dict)
        return outputs 
开发者ID:apcode,项目名称:tensorflow_fasttext,代码行数:35,代码来源:predictor.py

示例9: testGraphWithoutVariables

# 需要导入模块: from tensorflow.python.saved_model import loader [as 别名]
# 或者: from tensorflow.python.saved_model.loader import load [as 别名]
def testGraphWithoutVariables(self):
    export_dir = os.path.join(test.get_temp_dir(), "test_graph_has_variables")
    builder = saved_model_builder.SavedModelBuilder(export_dir)

    # Graph with no variables.
    with self.test_session(graph=ops.Graph()) as sess:
      constant_5_name = constant_op.constant(5.0).name
      builder.add_meta_graph_and_variables(sess, ["foo"])

    # Second graph with no variables
    with self.test_session(graph=ops.Graph()) as sess:
      constant_6_name = constant_op.constant(6.0).name
      builder.add_meta_graph(["bar"])

    # Save the SavedModel to disk.
    builder.save()

    # Restore the graph with tag "foo".
    with self.test_session(graph=ops.Graph()) as sess:
      loader.load(sess, ["foo"], export_dir)
      # Read the constant a from the graph.
      a = ops.get_default_graph().get_tensor_by_name(constant_5_name)
      b = constant_op.constant(6.0)
      c = a * b
      self.assertEqual(30.0, sess.run(c))

    # Restore the graph with tag "bar".
    with self.test_session(graph=ops.Graph()) as sess:
      loader.load(sess, ["bar"], export_dir)
      # Read the constant a from the graph.
      a = ops.get_default_graph().get_tensor_by_name(constant_6_name)
      b = constant_op.constant(5.0)
      c = a * b
      self.assertEqual(30.0, sess.run(c)) 
开发者ID:abhisuri97,项目名称:auto-alt-text-lambda-api,代码行数:36,代码来源:saved_model_test.py

示例10: testSaveAsText

# 需要导入模块: from tensorflow.python.saved_model import loader [as 别名]
# 或者: from tensorflow.python.saved_model.loader import load [as 别名]
def testSaveAsText(self):
    export_dir = os.path.join(test.get_temp_dir(), "test_astext")
    builder = saved_model_builder.SavedModelBuilder(export_dir)

    # Graph with a single variable. SavedModel invoked to:
    # - add with weights.
    with self.test_session(graph=ops.Graph()) as sess:
      self._init_and_validate_variable(sess, "v", 42)
      builder.add_meta_graph_and_variables(sess, ["foo"])

    # Graph with the same single variable. SavedModel invoked to:
    # - simply add the model (weights are not updated).
    with self.test_session(graph=ops.Graph()) as sess:
      self._init_and_validate_variable(sess, "v", 43)
      builder.add_meta_graph(["bar"])

    # Save the SavedModel to disk in text format.
    builder.save(as_text=True)

    # Restore the graph with tag "foo", whose variables were saved.
    with self.test_session(graph=ops.Graph()) as sess:
      loader.load(sess, ["foo"], export_dir)
      self.assertEqual(
          42, ops.get_collection(ops.GraphKeys.GLOBAL_VARIABLES)[0].eval())

    # Restore the graph with tag "bar", whose variables were not saved.
    with self.test_session(graph=ops.Graph()) as sess:
      loader.load(sess, ["bar"], export_dir)
      self.assertEqual(
          42, ops.get_collection(ops.GraphKeys.GLOBAL_VARIABLES)[0].eval()) 
开发者ID:abhisuri97,项目名称:auto-alt-text-lambda-api,代码行数:32,代码来源:saved_model_test.py

示例11: testAssets

# 需要导入模块: from tensorflow.python.saved_model import loader [as 别名]
# 或者: from tensorflow.python.saved_model.loader import load [as 别名]
def testAssets(self):
    export_dir = os.path.join(test.get_temp_dir(), "test_assets")
    builder = saved_model_builder.SavedModelBuilder(export_dir)

    with self.test_session(graph=ops.Graph()) as sess:
      self._init_and_validate_variable(sess, "v", 42)

      # Build an asset collection.
      ignored_filepath = os.path.join(
          compat.as_bytes(test.get_temp_dir()), compat.as_bytes("ignored.txt"))
      file_io.write_string_to_file(ignored_filepath, "will be ignored")

      asset_collection = self._build_asset_collection("hello42.txt",
                                                      "foo bar baz",
                                                      "asset_file_tensor")

      builder.add_meta_graph_and_variables(
          sess, ["foo"], assets_collection=asset_collection)

    # Save the SavedModel to disk.
    builder.save()

    with self.test_session(graph=ops.Graph()) as sess:
      foo_graph = loader.load(sess, ["foo"], export_dir)
      self._validate_asset_collection(export_dir, foo_graph.collection_def,
                                      "hello42.txt", "foo bar baz",
                                      "asset_file_tensor:0")
      ignored_asset_path = os.path.join(
          compat.as_bytes(export_dir),
          compat.as_bytes(constants.ASSETS_DIRECTORY),
          compat.as_bytes("ignored.txt"))
      self.assertFalse(file_io.file_exists(ignored_asset_path)) 
开发者ID:abhisuri97,项目名称:auto-alt-text-lambda-api,代码行数:34,代码来源:saved_model_test.py

示例12: testCustomMainOp

# 需要导入模块: from tensorflow.python.saved_model import loader [as 别名]
# 或者: from tensorflow.python.saved_model.loader import load [as 别名]
def testCustomMainOp(self):
    export_dir = os.path.join(test.get_temp_dir(), "test_main_op")
    builder = saved_model_builder.SavedModelBuilder(export_dir)

    with self.test_session(graph=ops.Graph()) as sess:
      # Add `v1` and `v2` variables to the graph.
      v1 = variables.Variable(1, name="v1")
      ops.add_to_collection("v", v1)
      v2 = variables.Variable(2, name="v2")
      ops.add_to_collection("v", v2)

      # Initialize another variable `v3` to 42.
      v3 = variables.Variable(42, name="v3")
      ops.add_to_collection("v", v3)

      # Set up an assignment op to be run as part of the main_op.
      with ops.control_dependencies([main_op.main_op()]):
        add_v1_v2 = math_ops.add(v1._ref(), v2._ref())
        custom_main_op = control_flow_ops.group(state_ops.assign(v3, add_v1_v2))

      sess.run(custom_main_op)
      builder.add_meta_graph_and_variables(
          sess, ["foo"], main_op=custom_main_op)

    # Save the SavedModel to disk.
    builder.save()

    with self.test_session(graph=ops.Graph()) as sess:
      loader.load(sess, ["foo"], export_dir)
      self.assertEqual(1, ops.get_collection("v")[0].eval())
      self.assertEqual(2, ops.get_collection("v")[1].eval())
      # Evaluates to the sum of the first two variables and assigned as part of
      # the main_op, following a restore.
      self.assertEqual(3, ops.get_collection("v")[2].eval()) 
开发者ID:abhisuri97,项目名称:auto-alt-text-lambda-api,代码行数:36,代码来源:saved_model_test.py

示例13: testLegacyInitOp

# 需要导入模块: from tensorflow.python.saved_model import loader [as 别名]
# 或者: from tensorflow.python.saved_model.loader import load [as 别名]
def testLegacyInitOp(self):
    export_dir = os.path.join(test.get_temp_dir(), "test_legacy_init_op")
    builder = saved_model_builder.SavedModelBuilder(export_dir)

    with self.test_session(graph=ops.Graph()) as sess:
      # Add `v1` and `v2` variables to the graph.
      v1 = variables.Variable(1, name="v1")
      ops.add_to_collection("v", v1)
      v2 = variables.Variable(2, name="v2")
      ops.add_to_collection("v", v2)

      # Initialize another variable `v3` to 42.
      v3 = variables.Variable(42, name="v3", trainable=False, collections=[])
      ops.add_to_collection("v", v3)

      # Set up an assignment op to be run as part of the legacy_init_op.
      assign_v3 = state_ops.assign(v3, math_ops.add(v1, v2))
      legacy_init_op = control_flow_ops.group(assign_v3, name="legacy_init_op")

      sess.run(variables.global_variables_initializer())
      builder.add_meta_graph_and_variables(
          sess, ["foo"], legacy_init_op=legacy_init_op)

    # Save the SavedModel to disk.
    builder.save()

    with self.test_session(graph=ops.Graph()) as sess:
      loader.load(sess, ["foo"], export_dir)
      self.assertEqual(1, ops.get_collection("v")[0].eval())
      self.assertEqual(2, ops.get_collection("v")[1].eval())
      # Evaluates to the sum of the first two variables and assigned as part of
      # the legacy_init_op, following a restore.
      self.assertEqual(3, ops.get_collection("v")[2].eval()) 
开发者ID:abhisuri97,项目名称:auto-alt-text-lambda-api,代码行数:35,代码来源:saved_model_test.py

示例14: testMultipleAssets

# 需要导入模块: from tensorflow.python.saved_model import loader [as 别名]
# 或者: from tensorflow.python.saved_model.loader import load [as 别名]
def testMultipleAssets(self):
    export_dir = os.path.join(test.get_temp_dir(), "test_multiple_assets")
    builder = saved_model_builder.SavedModelBuilder(export_dir)

    with self.test_session(graph=ops.Graph()) as sess:
      self._init_and_validate_variable(sess, "v", 42)

      # Build an asset collection specific to `foo` graph.
      asset_collection = self._build_asset_collection("foo.txt", "content_foo",
                                                      "asset_file_tensor")

      # Add the asset collection as part of the graph with tag "foo".
      builder.add_meta_graph_and_variables(
          sess, ["foo"], assets_collection=asset_collection)

    with self.test_session(graph=ops.Graph()) as sess:
      self._init_and_validate_variable(sess, "v", 42)

      # Build an asset collection specific to `bar` graph.
      asset_collection = self._build_asset_collection("bar.txt", "content_bar",
                                                      "asset_file_tensor")

      # Add the asset collection as part of the graph with tag "bar".
      builder.add_meta_graph(["bar"], assets_collection=asset_collection)

    # Save the SavedModel to disk.
    builder.save()

    # Check assets restored for graph with tag "foo".
    with self.test_session(graph=ops.Graph()) as sess:
      foo_graph = loader.load(sess, ["foo"], export_dir)
      self._validate_asset_collection(export_dir, foo_graph.collection_def,
                                      "foo.txt", "content_foo",
                                      "asset_file_tensor:0")

    # Check assets restored for graph with tag "bar".
    with self.test_session(graph=ops.Graph()) as sess:
      bar_graph = loader.load(sess, ["bar"], export_dir)
      self._validate_asset_collection(export_dir, bar_graph.collection_def,
                                      "bar.txt", "content_bar",
                                      "asset_file_tensor:0") 
开发者ID:abhisuri97,项目名称:auto-alt-text-lambda-api,代码行数:43,代码来源:saved_model_test.py

示例15: testSaveAsText

# 需要导入模块: from tensorflow.python.saved_model import loader [as 别名]
# 或者: from tensorflow.python.saved_model.loader import load [as 别名]
def testSaveAsText(self):
    export_dir = os.path.join(tf.test.get_temp_dir(), "test_astext")
    builder = saved_model_builder.SavedModelBuilder(export_dir)

    # Graph with a single variable. SavedModel invoked to:
    # - add with weights.
    with self.test_session(graph=tf.Graph()) as sess:
      self._init_and_validate_variable(sess, "v", 42)
      builder.add_meta_graph_and_variables(sess, ["foo"])

    # Graph with the same single variable. SavedModel invoked to:
    # - simply add the model (weights are not updated).
    with self.test_session(graph=tf.Graph()) as sess:
      self._init_and_validate_variable(sess, "v", 43)
      builder.add_meta_graph(["bar"])

    # Save the SavedModel to disk in text format.
    builder.save(as_text=True)

    # Restore the graph with tag "foo", whose variables were saved.
    with self.test_session(graph=tf.Graph()) as sess:
      loader.load(sess, ["foo"], export_dir)
      self.assertEqual(
          42, tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)[0].eval())

    # Restore the graph with tag "bar", whose variables were not saved.
    with self.test_session(graph=tf.Graph()) as sess:
      loader.load(sess, ["bar"], export_dir)
      self.assertEqual(
          42, tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)[0].eval()) 
开发者ID:tobegit3hub,项目名称:deep_image_model,代码行数:32,代码来源:saved_model_test.py


注:本文中的tensorflow.python.saved_model.loader.load方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。