本文整理汇总了Python中tensorflow.python.pywrap_tensorflow.TF_NewStatus方法的典型用法代码示例。如果您正苦于以下问题:Python pywrap_tensorflow.TF_NewStatus方法的具体用法?Python pywrap_tensorflow.TF_NewStatus怎么用?Python pywrap_tensorflow.TF_NewStatus使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.python.pywrap_tensorflow
的用法示例。
在下文中一共展示了pywrap_tensorflow.TF_NewStatus方法的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __del__
# 需要导入模块: from tensorflow.python import pywrap_tensorflow [as 别名]
# 或者: from tensorflow.python.pywrap_tensorflow import TF_NewStatus [as 别名]
def __del__(self):
# cleanly ignore all exceptions
try:
self.close()
except Exception: # pylint: disable=broad-except
pass
if self._session is not None:
# We create `status` outside the `try` block because at shutdown
# `tf_session` may have been garbage collected, and the creation
# of a status object may fail. In that case, we prefer to ignore
# the failure and silently leak the session object, since the
# program is about to terminate.
status = None
try:
status = tf_session.TF_NewStatus()
tf_session.TF_DeleteDeprecatedSession(self._session, status)
except AttributeError:
# 'NoneType' object has no attribute 'TF_NewStatus'
pass
finally:
if status is not None:
tf_session.TF_DeleteStatus(status)
self._session = None
示例2: is_directory
# 需要导入模块: from tensorflow.python import pywrap_tensorflow [as 别名]
# 或者: from tensorflow.python.pywrap_tensorflow import TF_NewStatus [as 别名]
def is_directory(dirname):
"""Returns whether the path is a directory or not.
Args:
dirname: string, path to a potential directory
Returns:
True, if the path is a directory; False otherwise
"""
try:
status = pywrap_tensorflow.TF_NewStatus()
return pywrap_tensorflow.IsDirectory(compat.as_bytes(dirname), status)
finally:
pywrap_tensorflow.TF_DeleteStatus(status)
示例3: raise_exception_on_not_ok_status
# 需要导入模块: from tensorflow.python import pywrap_tensorflow [as 别名]
# 或者: from tensorflow.python.pywrap_tensorflow import TF_NewStatus [as 别名]
def raise_exception_on_not_ok_status():
status = pywrap_tensorflow.TF_NewStatus()
try:
yield status
if pywrap_tensorflow.TF_GetCode(status) != 0:
raise _make_specific_exception(
None, None,
compat.as_text(pywrap_tensorflow.TF_Message(status)),
pywrap_tensorflow.TF_GetCode(status))
finally:
pywrap_tensorflow.TF_DeleteStatus(status)
示例4: load_file_system_library
# 需要导入模块: from tensorflow.python import pywrap_tensorflow [as 别名]
# 或者: from tensorflow.python.pywrap_tensorflow import TF_NewStatus [as 别名]
def load_file_system_library(library_filename):
"""Loads a TensorFlow plugin, containing file system implementation.
Pass `library_filename` to a platform-specific mechanism for dynamically
loading a library. The rules for determining the exact location of the
library are platform-specific and are not documented here.
Args:
library_filename: Path to the plugin.
Relative or absolute filesystem path to a dynamic library file.
Returns:
None.
Raises:
RuntimeError: when unable to load the library.
"""
status = py_tf.TF_NewStatus()
lib_handle = py_tf.TF_LoadLibrary(library_filename, status)
try:
error_code = py_tf.TF_GetCode(status)
if error_code != 0:
error_msg = compat.as_text(py_tf.TF_Message(status))
# pylint: disable=protected-access
raise errors_impl._make_specific_exception(
None, None, error_msg, error_code)
# pylint: enable=protected-access
finally:
py_tf.TF_DeleteStatus(status)
示例5: __del__
# 需要导入模块: from tensorflow.python import pywrap_tensorflow [as 别名]
# 或者: from tensorflow.python.pywrap_tensorflow import TF_NewStatus [as 别名]
def __del__(self):
# cleanly ignore all exceptions
try:
self.close()
except Exception: # pylint: disable=broad-except
pass
if self._session is not None:
try:
status = tf_session.TF_NewStatus()
tf_session.TF_DeleteDeprecatedSession(self._session, status)
finally:
tf_session.TF_DeleteStatus(status)
self._session = None
示例6: raise_exception_on_not_ok_status
# 需要导入模块: from tensorflow.python import pywrap_tensorflow [as 别名]
# 或者: from tensorflow.python.pywrap_tensorflow import TF_NewStatus [as 别名]
def raise_exception_on_not_ok_status():
try:
status = pywrap_tensorflow.TF_NewStatus()
yield status
if pywrap_tensorflow.TF_GetCode(status) != 0:
raise _make_specific_exception(
None, None,
compat.as_text(pywrap_tensorflow.TF_Message(status)),
pywrap_tensorflow.TF_GetCode(status))
finally:
pywrap_tensorflow.TF_DeleteStatus(status)
示例7: __init__
# 需要导入模块: from tensorflow.python import pywrap_tensorflow [as 别名]
# 或者: from tensorflow.python.pywrap_tensorflow import TF_NewStatus [as 别名]
def __init__(self):
self.status = c_api.TF_NewStatus()
开发者ID:PacktPublishing,项目名称:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代码行数:4,代码来源:c_api_util.py
示例8: load_op_library
# 需要导入模块: from tensorflow.python import pywrap_tensorflow [as 别名]
# 或者: from tensorflow.python.pywrap_tensorflow import TF_NewStatus [as 别名]
def load_op_library(library_filename):
"""Loads a TensorFlow plugin, containing custom ops and kernels.
Pass "library_filename" to a platform-specific mechanism for dynamically
loading a library. The rules for determining the exact location of the
library are platform-specific and are not documented here. When the
library is loaded, ops and kernels registered in the library via the
`REGISTER_*` macros are made available in the TensorFlow process. Note
that ops with the same name as an existing op are rejected and not
registered with the process.
Args:
library_filename: Path to the plugin.
Relative or absolute filesystem path to a dynamic library file.
Returns:
A python module containing the Python wrappers for Ops defined in
the plugin.
Raises:
RuntimeError: when unable to load the library or get the python wrappers.
"""
status = py_tf.TF_NewStatus()
lib_handle = py_tf.TF_LoadLibrary(library_filename, status)
try:
error_code = py_tf.TF_GetCode(status)
if error_code != 0:
error_msg = compat.as_text(py_tf.TF_Message(status))
# pylint: disable=protected-access
raise errors_impl._make_specific_exception(
None, None, error_msg, error_code)
# pylint: enable=protected-access
finally:
py_tf.TF_DeleteStatus(status)
op_list_str = py_tf.TF_GetOpList(lib_handle)
op_list = op_def_pb2.OpList()
op_list.ParseFromString(compat.as_bytes(op_list_str))
wrappers = py_tf.GetPythonWrappers(op_list_str)
# Delete the library handle to release any memory held in C
# that are no longer needed.
py_tf.TF_DeleteLibraryHandle(lib_handle)
# Get a unique name for the module.
module_name = hashlib.md5(wrappers).hexdigest()
if module_name in sys.modules:
return sys.modules[module_name]
module = imp.new_module(module_name)
# pylint: disable=exec-used
exec(wrappers, module.__dict__)
# Stash away the library handle for making calls into the dynamic library.
module.LIB_HANDLE = lib_handle
# OpDefs of the list of ops defined in the library.
module.OP_LIST = op_list
sys.modules[module_name] = module
return module
示例9: load_op_library
# 需要导入模块: from tensorflow.python import pywrap_tensorflow [as 别名]
# 或者: from tensorflow.python.pywrap_tensorflow import TF_NewStatus [as 别名]
def load_op_library(library_filename):
"""Loads a TensorFlow plugin, containing custom ops and kernels.
Pass "library_filename" to a platform-specific mechanism for dynamically
loading a library. The rules for determining the exact location of the
library are platform-specific and are not documented here. When the
library is loaded, ops and kernels registered in the library via the
`REGISTER_*` macros are made available in the TensorFlow process. Note
that ops with the same name as an existing op are rejected and not
registered with the process.
Args:
library_filename: Path to the plugin.
Relative or absolute filesystem path to a dynamic library file.
Returns:
A python module containing the Python wrappers for Ops defined in
the plugin.
Raises:
RuntimeError: when unable to load the library or get the python wrappers.
"""
status = py_tf.TF_NewStatus()
lib_handle = py_tf.TF_LoadLibrary(library_filename, status)
try:
error_code = py_tf.TF_GetCode(status)
if error_code != 0:
error_msg = compat.as_text(py_tf.TF_Message(status))
# pylint: disable=protected-access
raise errors_impl._make_specific_exception(
None, None, error_msg, error_code)
# pylint: enable=protected-access
finally:
py_tf.TF_DeleteStatus(status)
op_list_str = py_tf.TF_GetOpList(lib_handle)
op_list = op_def_pb2.OpList()
op_list.ParseFromString(compat.as_bytes(op_list_str))
wrappers = py_tf.GetPythonWrappers(op_list_str)
# Get a unique name for the module.
module_name = hashlib.md5(wrappers).hexdigest()
if module_name in sys.modules:
return sys.modules[module_name]
module = imp.new_module(module_name)
# pylint: disable=exec-used
exec(wrappers, module.__dict__)
# Stash away the library handle for making calls into the dynamic library.
module.LIB_HANDLE = lib_handle
# OpDefs of the list of ops defined in the library.
module.OP_LIST = op_list
sys.modules[module_name] = module
return module