当前位置: 首页>>代码示例>>Python>>正文


Python tf_logging.warn方法代码示例

本文整理汇总了Python中tensorflow.python.platform.tf_logging.warn方法的典型用法代码示例。如果您正苦于以下问题:Python tf_logging.warn方法的具体用法?Python tf_logging.warn怎么用?Python tf_logging.warn使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow.python.platform.tf_logging的用法示例。


在下文中一共展示了tf_logging.warn方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: __init__

# 需要导入模块: from tensorflow.python.platform import tf_logging [as 别名]
# 或者: from tensorflow.python.platform.tf_logging import warn [as 别名]
def __init__(self, num_units, forget_bias=1.0, input_size=None,
                 state_is_tuple=True, reuse=None):
        """Initialize the basic LSTM cell.
        Args:
          num_units: int, The number of units in the LSTM cell.
          forget_bias: float, The bias added to forget gates (see above).
          input_size: Deprecated and unused.
          state_is_tuple: If True, accepted and returned states are 2-tuples of
            the `c_state` and `m_state`.  If False, they are concatenated
            along the column axis.  The latter behavior will soon be deprecated.
          reuse: (optional) Python boolean describing whether to reuse variables
            in an existing scope.  If not `True`, and the existing scope already has
            the given variables, an error is raised.
        """
        if not state_is_tuple:
            logging.warn("%s: Using a concatenated state is slower and will soon be "
                         "deprecated.  Use state_is_tuple=True.", self)
        if input_size is not None:
            logging.warn("%s: The input_size parameter is deprecated.", self)
        self._num_units = num_units
        self._forget_bias = forget_bias
        self._state_is_tuple = state_is_tuple
        self._reuse = reuse 
开发者ID:hirofumi0810,项目名称:tensorflow_end2end_speech_recognition,代码行数:25,代码来源:basic_lstm.py

示例2: __init__

# 需要导入模块: from tensorflow.python.platform import tf_logging [as 别名]
# 或者: from tensorflow.python.platform.tf_logging import warn [as 别名]
def __init__(self, num_units, is_training, forget_bias=1.0, input_size=None,
                 state_is_tuple=True, reuse=None):
        """Initialize the basic LSTM cell.
        Args:
          num_units: int, The number of units in the LSTM cell.
          is_training: bool, set True when training.
          forget_bias: float, The bias added to forget gates (see above).
          input_size: Deprecated and unused.
          state_is_tuple: If True, accepted and returned states are 2-tuples of
            the `c_state` and `m_state`.  If False, they are concatenated
            along the column axis.  The latter behavior will soon be deprecated.
          reuse: (optional) Python boolean describing whether to reuse variables
            in an existing scope.  If not `True`, and the existing scope already has
            the given variables, an error is raised.
        """
        if not state_is_tuple:
            logging.warn("%s: Using a concatenated state is slower and will soon be "
                         "deprecated.  Use state_is_tuple=True.", self)
        if input_size is not None:
            logging.warn("%s: The input_size parameter is deprecated.", self)
        self._num_units = num_units
        self._forget_bias = forget_bias
        self._state_is_tuple = state_is_tuple
        self._reuse = reuse
        self._is_training = is_training 
开发者ID:hirofumi0810,项目名称:tensorflow_end2end_speech_recognition,代码行数:27,代码来源:bn_basic_lstm.py

示例3: __init__

# 需要导入模块: from tensorflow.python.platform import tf_logging [as 别名]
# 或者: from tensorflow.python.platform.tf_logging import warn [as 别名]
def __init__(self, num_units, forget_bias=1.0,
               state_is_tuple=True, activation=None, reuse=None):
    """Initialize the basic LSTM cell.

    Args:
      num_units: int, The number of units in the LSTM cell.
      forget_bias: float, The bias added to forget gates (see above).
      state_is_tuple: If True, accepted and returned states are 2-tuples of
        the `c_state` and `m_state`.  If False, they are concatenated
        along the column axis.  The latter behavior will soon be deprecated.
      activation: Activation function of the inner states.  Default: `tanh`.
      reuse: (optional) Python boolean describing whether to reuse variables
        in an existing scope.  If not `True`, and the existing scope already has
        the given variables, an error is raised.
    """
    super(BasicLSTMCell, self).__init__(_reuse=reuse)
    if not state_is_tuple:
      logging.warn("%s: Using a concatenated state is slower and will soon be "
                   "deprecated.  Use state_is_tuple=True.", self)
    self._num_units = num_units
    self._forget_bias = forget_bias
    self._state_is_tuple = state_is_tuple
    self._activation = activation or math_ops.tanh 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:25,代码来源:rnn_cell_impl.py

示例4: garbage_collect_exports

# 需要导入模块: from tensorflow.python.platform import tf_logging [as 别名]
# 或者: from tensorflow.python.platform.tf_logging import warn [as 别名]
def garbage_collect_exports(export_dir_base, exports_to_keep):
  """Deletes older exports, retaining only a given number of the most recent.

  Export subdirectories are assumed to be named with monotonically increasing
  integers; the most recent are taken to be those with the largest values.

  Args:
    export_dir_base: the base directory under which each export is in a
      versioned subdirectory.
    exports_to_keep: the number of recent exports to retain.
  """
  if exports_to_keep is None:
    return

  keep_filter = gc.largest_export_versions(exports_to_keep)
  delete_filter = gc.negation(keep_filter)
  for p in delete_filter(gc.get_paths(export_dir_base,
                                      parser=_export_version_parser)):
    try:
      gfile.DeleteRecursively(p.path)
    except errors_impl.NotFoundError as e:
      logging.warn('Can not delete %s recursively: %s', p.path, e) 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:24,代码来源:saved_model_export_utils.py

示例5: _write_summary_results

# 需要导入模块: from tensorflow.python.platform import tf_logging [as 别名]
# 或者: from tensorflow.python.platform.tf_logging import warn [as 别名]
def _write_summary_results(output_dir, eval_results, current_global_step):
  """Writes eval results into summary file in given dir."""
  logging.info('Saving evaluation summary for step %d: %s', current_global_step,
               _eval_results_to_str(eval_results))
  summary_writer = get_summary_writer(output_dir)
  summary = summary_pb2.Summary()
  for key in eval_results:
    if eval_results[key] is None:
      continue
    value = summary.value.add()
    value.tag = key
    if (isinstance(eval_results[key], np.float32) or
        isinstance(eval_results[key], float)):
      value.simple_value = float(eval_results[key])
    else:
      logging.warn('Skipping summary for %s, must be a float or np.float32.',
                   key)
  summary_writer.add_summary(summary, current_global_step)
  summary_writer.flush() 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:21,代码来源:graph_actions.py

示例6: __new__

# 需要导入模块: from tensorflow.python.platform import tf_logging [as 别名]
# 或者: from tensorflow.python.platform.tf_logging import warn [as 别名]
def __new__(cls,
              column_name,
              size,
              dimension,
              hash_key,
              combiner="sqrtn",
              initializer=None):
    if initializer is not None and not callable(initializer):
      raise ValueError("initializer must be callable if specified. "
                       "column_name: {}".format(column_name))
    if initializer is None:
      logging.warn("The default stddev value of initializer will change from "
                   "\"0.1\" to \"1/sqrt(dimension)\" after 2017/02/25.")
      stddev = 0.1
      initializer = init_ops.truncated_normal_initializer(
          mean=0.0, stddev=stddev)
    return super(_ScatteredEmbeddingColumn, cls).__new__(cls, column_name, size,
                                                         dimension, hash_key,
                                                         combiner,
                                                         initializer) 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:22,代码来源:feature_column.py

示例7: variable_op_scope

# 需要导入模块: from tensorflow.python.platform import tf_logging [as 别名]
# 或者: from tensorflow.python.platform.tf_logging import warn [as 别名]
def variable_op_scope(values,
                      name_or_scope,
                      default_name=None,
                      initializer=None,
                      regularizer=None,
                      caching_device=None,
                      partitioner=None,
                      custom_getter=None,
                      reuse=None,
                      dtype=None):
  """Deprecated: context manager for defining an op that creates variables."""
  logging.warn("tf.variable_op_scope(values, name, default_name) is deprecated,"
               " use tf.variable_scope(name, default_name, values)")
  with variable_scope(name_or_scope,
                      default_name=default_name,
                      values=values,
                      initializer=initializer,
                      regularizer=regularizer,
                      caching_device=caching_device,
                      partitioner=partitioner,
                      custom_getter=custom_getter,
                      reuse=reuse,
                      dtype=dtype) as scope:
    yield scope 
开发者ID:abhisuri97,项目名称:auto-alt-text-lambda-api,代码行数:26,代码来源:variable_scope.py

示例8: _ParseFileVersion

# 需要导入模块: from tensorflow.python.platform import tf_logging [as 别名]
# 或者: from tensorflow.python.platform.tf_logging import warn [as 别名]
def _ParseFileVersion(file_version):
  """Convert the string file_version in event.proto into a float.

  Args:
    file_version: String file_version from event.proto

  Returns:
    Version number as a float.
  """
  tokens = file_version.split('brain.Event:')
  try:
    return float(tokens[-1])
  except ValueError:
    ## This should never happen according to the definition of file_version
    ## specified in event.proto.
    logging.warn(('Invalid event.proto file_version. Defaulting to use of '
                  'out-of-order event.step logic for purging expired events.'))
    return -1 
开发者ID:abhisuri97,项目名称:auto-alt-text-lambda-api,代码行数:20,代码来源:event_accumulator.py

示例9: __init__

# 需要导入模块: from tensorflow.python.platform import tf_logging [as 别名]
# 或者: from tensorflow.python.platform.tf_logging import warn [as 别名]
def __init__(self, num_units, forget_bias=1.0, input_size=None,
               state_is_tuple=True, activation=tanh):
    """Initialize the basic LSTM cell.

    Args:
      num_units: int, The number of units in the LSTM cell.
      forget_bias: float, The bias added to forget gates (see above).
      input_size: Deprecated and unused.
      state_is_tuple: If True, accepted and returned states are 2-tuples of
        the `c_state` and `m_state`.  If False, they are concatenated
        along the column axis.  The latter behavior will soon be deprecated.
      activation: Activation function of the inner states.
    """
    if not state_is_tuple:
      logging.warn("%s: Using a concatenated state is slower and will soon be "
                   "deprecated.  Use state_is_tuple=True.", self)
    if input_size is not None:
      logging.warn("%s: The input_size parameter is deprecated.", self)
    self._num_units = num_units
    self._forget_bias = forget_bias
    self._state_is_tuple = state_is_tuple
    self._activation = activation 
开发者ID:abhisuri97,项目名称:auto-alt-text-lambda-api,代码行数:24,代码来源:core_rnn_cell_impl.py

示例10: __init__

# 需要导入模块: from tensorflow.python.platform import tf_logging [as 别名]
# 或者: from tensorflow.python.platform.tf_logging import warn [as 别名]
def __init__(self, num_units, input_size=None,
               use_peepholes=False, cell_clip=None,
               initializer=None, num_proj=None, proj_clip=None,
               num_unit_shards=1, num_proj_shards=1,
               forget_bias=1.0, state_is_tuple=False,
               activation=tanh):

#    if not state_is_tuple:
#      logging.warn(
#          "%s: Using a concatenated state is slower and will soon be "
#          "deprecated.  Use state_is_tuple=True." % self)
    if input_size is not None:
      logging.warn("%s: The input_size parameter is deprecated." % self)

    #self._use_peepholes = use_peepholes
    #self._cell_clip = cell_clip
    #self._initializer = initializer
    #self._num_proj = num_proj
    #self._num_unit_shards = num_unit_shards
    #self._num_proj_shards = num_proj_shards

    self._num_units = num_units
    self._forget_bias = forget_bias
    self._state_is_tuple = state_is_tuple
    self._activation = activation 
开发者ID:GuangmingZhu,项目名称:Conv3D_BICLSTM,代码行数:27,代码来源:ConvLSTMCell.py

示例11: _validate_input_pipeline

# 需要导入模块: from tensorflow.python.platform import tf_logging [as 别名]
# 或者: from tensorflow.python.platform.tf_logging import warn [as 别名]
def _validate_input_pipeline(self):
    """Validates the input pipeline.

    Perform some sanity checks to log user friendly information. We should
    error out to give users better error message. But, if
    _WRAP_INPUT_FN_INTO_WHILE_LOOP is False (legacy behavior), we cannot break
    user code, so, log a warning.

    Raises:
      RuntimeError: If the validation failed.
    """
    if ops.get_default_graph().get_collection(ops.GraphKeys.QUEUE_RUNNERS):
      err_msg = ('Input pipeline contains one or more QueueRunners. '
                 'It could be slow and not scalable. Please consider '
                 'converting your input pipeline to use `tf.data` instead (see '
                 'https://www.tensorflow.org/guide/datasets for '
                 'instructions.')
      if _WRAP_INPUT_FN_INTO_WHILE_LOOP:
        raise RuntimeError(err_msg)
      else:
        logging.warn(err_msg) 
开发者ID:ymcui,项目名称:Chinese-XLNet,代码行数:23,代码来源:tpu_estimator.py

示例12: __init__

# 需要导入模块: from tensorflow.python.platform import tf_logging [as 别名]
# 或者: from tensorflow.python.platform.tf_logging import warn [as 别名]
def __init__(self, num_units, forget_bias=1.0, input_size=None,
                             state_is_tuple=True, activation=tanh):
        """Initialize the basic LSTM cell.

        Args:
            num_units: int, The number of units in the LSTM cell.
            forget_bias: float, The bias added to forget gates (see above).
            input_size: Deprecated and unused.
            state_is_tuple: If True, accepted and returned states are 2-tuples of
                the `c_state` and `m_state`.    If False, they are concatenated
                along the column axis.    The latter behavior will soon be deprecated.
            activation: Activation function of the inner states.
        """
        if not state_is_tuple:
            logging.warn("%s: Using a concatenated state is slower and will soon be "
                                     "deprecated.    Use state_is_tuple=True.", self)
        if input_size is not None:
            logging.warn("%s: The input_size parameter is deprecated.", self)
        self._num_units = num_units
        self._forget_bias = forget_bias
        self._state_is_tuple = state_is_tuple
        self._activation = activation 
开发者ID:thu-coai,项目名称:ecm,代码行数:24,代码来源:rnn_cell.py

示例13: build

# 需要导入模块: from tensorflow.python.platform import tf_logging [as 别名]
# 或者: from tensorflow.python.platform.tf_logging import warn [as 别名]
def build(self, _):
    logging.warn("RevBlock constructs its variables on first call, not on "
                 "build.")
    self.built = True 
开发者ID:taehoonlee,项目名称:tensornets,代码行数:6,代码来源:rev_block_lib.py

示例14: _write_dict_to_summary

# 需要导入模块: from tensorflow.python.platform import tf_logging [as 别名]
# 或者: from tensorflow.python.platform.tf_logging import warn [as 别名]
def _write_dict_to_summary(output_dir,
                           dictionary,
                           current_global_step):
  """Writes a `dict` into summary file in given output directory.

  Args:
    output_dir: `str`, directory to write the summary file in.
    dictionary: the `dict` to be written to summary file.
    current_global_step: `int`, the current global step.
  """
  logging.info('Saving dict for global step %d: %s', current_global_step,
               _dict_to_str(dictionary))
  summary_writer = writer_cache.FileWriterCache.get(output_dir)
  summary_proto = summary_pb2.Summary()
  for key in dictionary:
    if dictionary[key] is None:
      continue
    if key  == "global_step":
      continue
    value = summary_proto.value.add()
    value.tag = key
    if (isinstance(dictionary[key], np.float32) or 
        isinstance(dictionary[key], float)):
      value.simple_value = float(dictionary[key])
    elif (isinstance(dictionary[key], np.int64) or
          isinstance(dictionary[key], np.int32) or
          isinstance(dictionary[key], int)):
      value.simple_value = int(dictionary[key])
    else:
      logging.warn('Skipping summary for %s, must be a float, np.float32, np.int64, np.int32 or int.',
                   key)
  summary_writer.add_summary(summary_proto, current_global_step)
  summary_writer.flush() 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:35,代码来源:estimator.py

示例15: variable_op_scope

# 需要导入模块: from tensorflow.python.platform import tf_logging [as 别名]
# 或者: from tensorflow.python.platform.tf_logging import warn [as 别名]
def variable_op_scope(values,
                      name_or_scope,
                      default_name=None,
                      initializer=None,
                      regularizer=None,
                      caching_device=None,
                      partitioner=None,
                      custom_getter=None,
                      reuse=None,
                      dtype=None,
                      use_resource=None):
  """Deprecated: context manager for defining an op that creates variables."""
  logging.warn("tf.variable_op_scope(values, name, default_name) is deprecated,"
               " use tf.variable_scope(name, default_name, values)")
  with variable_scope(name_or_scope,
                      default_name=default_name,
                      values=values,
                      initializer=initializer,
                      regularizer=regularizer,
                      caching_device=caching_device,
                      partitioner=partitioner,
                      custom_getter=custom_getter,
                      reuse=reuse,
                      dtype=dtype,
                      use_resource=use_resource) as scope:
    yield scope 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:28,代码来源:variable_scope.py


注:本文中的tensorflow.python.platform.tf_logging.warn方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。