本文整理汇总了Python中tensorflow.python.platform.test.main方法的典型用法代码示例。如果您正苦于以下问题:Python test.main方法的具体用法?Python test.main怎么用?Python test.main使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.python.platform.test
的用法示例。
在下文中一共展示了test.main方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: testBasicBatch
# 需要导入模块: from tensorflow.python.platform import test [as 别名]
# 或者: from tensorflow.python.platform.test import main [as 别名]
def testBasicBatch(self):
"""Tests that a single batched tensor executes together and only once."""
with self.test_session() as sess:
inp = array_ops.placeholder(dtype=dtypes.int32, shape=[1])
batched, index, _ = batch_ops.batch(
[inp], num_batch_threads=1, max_batch_size=2,
batch_timeout_micros=36000000, grad_timeout_micros=0,
batching_queue="")
thread_results = []
def worker():
thread_results.extend(
sess.run([batched, index], feed_dict={inp: [1]}))
worker_thread = threading.Thread(target=worker)
worker_thread.start()
main_results = sess.run([batched, index], feed_dict={inp: [2]})
worker_thread.join()
# At this point either the thread or the main did the batch and the other
# should have empty results.
if list(thread_results[0][0]):
batch_t = thread_results[0][0]
index_t = thread_results[1]
empty_b = main_results[0][0]
empty_m = main_results[1]
else:
batch_t = main_results[0][0]
index_t = main_results[1]
empty_b = thread_results[0][0]
empty_m = thread_results[1]
# Check that both the inputs made it out exactly once.
self.assertAllEqual(sorted(batch_t), (1, 2))
# Check that we get 2 rows in the index tensor.
self.assertEqual(len(index_t), 2)
# Check that the other ones are empty.
self.assertEqual(len(empty_b), 0)
self.assertEqual(len(empty_m), 0)
示例2: testBatchWithPadding
# 需要导入模块: from tensorflow.python.platform import test [as 别名]
# 或者: from tensorflow.python.platform.test import main [as 别名]
def testBatchWithPadding(self):
"""Test that batching with padding up to an allowed batch size works."""
with self.test_session() as sess:
inp = array_ops.placeholder(dtype=dtypes.int32, shape=[2])
batched, index, _ = batch_ops.batch(
[inp], num_batch_threads=1, max_batch_size=10,
batch_timeout_micros=100000, # 100ms
allowed_batch_sizes=[5, 10],
grad_timeout_micros=0, batching_queue="")
thread_results = []
def worker():
thread_results.extend(
sess.run([batched, index], feed_dict={inp: [1, 3]}))
worker_thread = threading.Thread(target=worker)
worker_thread.start()
main_results = sess.run([batched, index], feed_dict={inp: [2, 4]})
worker_thread.join()
# At this point either the thread or the main did the batch and the other
# should have empty results.
if list(thread_results[0][0]):
batch_t = thread_results[0][0]
else:
batch_t = main_results[0][0]
# Check that the batch tensor incorporates the padding.
self.assertEqual(len(batch_t), 5)
示例3: testMultipleBatch
# 需要导入模块: from tensorflow.python.platform import test [as 别名]
# 或者: from tensorflow.python.platform.test import main [as 别名]
def testMultipleBatch(self):
"""Tests that multiple batched tensors execute together."""
with self.test_session() as sess:
inp0 = array_ops.placeholder(dtype=dtypes.int32, shape=[1])
inp1 = array_ops.placeholder(dtype=dtypes.int32, shape=[1])
batched, _, _ = batch_ops.batch(
[inp0, inp1],
num_batch_threads=1,
max_batch_size=2,
batch_timeout_micros=36000000,
grad_timeout_micros=0,
batching_queue="")
thread_results = []
def worker():
thread_results.extend(
sess.run([batched], feed_dict={inp0: [1],
inp1: [2]}))
worker_thread = threading.Thread(target=worker)
worker_thread.start()
main_results = sess.run([batched], feed_dict={inp0: [2], inp1: [3]})
worker_thread.join()
# At this point either the thread or the main did the batch and the other
# should have empty results.
if list(thread_results[0][0]):
batch_t = thread_results[0]
empty_t = main_results[0]
else:
batch_t = main_results[0]
empty_t = thread_results[0]
# Assert that the tensors were batched together.
self.assertAllEqual(sorted(batch_t[0]), [1, 2])
self.assertAllEqual(sorted(batch_t[1]), [2, 3])
self.assertAllEqual(empty_t[0], [])
self.assertAllEqual(empty_t[1], [])
示例4: main
# 需要导入模块: from tensorflow.python.platform import test [as 别名]
# 或者: from tensorflow.python.platform.test import main [as 别名]
def main(argv=None):
_context.enable_eager_execution()
_test.main(argv)
开发者ID:PacktPublishing,项目名称:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代码行数:5,代码来源:test.py