当前位置: 首页>>代码示例>>Python>>正文


Python test.is_gpu_available方法代码示例

本文整理汇总了Python中tensorflow.python.platform.test.is_gpu_available方法的典型用法代码示例。如果您正苦于以下问题:Python test.is_gpu_available方法的具体用法?Python test.is_gpu_available怎么用?Python test.is_gpu_available使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow.python.platform.test的用法示例。


在下文中一共展示了test.is_gpu_available方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: testDynamicOutputSizeWithRateOneValidPaddingNCHW

# 需要导入模块: from tensorflow.python.platform import test [as 别名]
# 或者: from tensorflow.python.platform.test import is_gpu_available [as 别名]
def testDynamicOutputSizeWithRateOneValidPaddingNCHW(self):
    if test.is_gpu_available(cuda_only=True):
      num_filters = 32
      input_size = [5, 3, 9, 11]
      expected_size = [None, num_filters, None, None]
      expected_size_dynamic = [5, num_filters, 7, 9]

      with self.session(use_gpu=True):
        images = array_ops.placeholder(np.float32,
                                       [None, input_size[1], None, None])
        output = layers_lib.convolution2d(
            images,
            num_filters, [3, 3],
            rate=1,
            padding='VALID',
            data_format='NCHW')
        variables_lib.global_variables_initializer().run()
        self.assertEqual(output.op.name, 'Conv/Relu')
        self.assertListEqual(output.get_shape().as_list(), expected_size)
        eval_output = output.eval({images: np.zeros(input_size, np.float32)})
        self.assertListEqual(list(eval_output.shape), expected_size_dynamic) 
开发者ID:google-research,项目名称:tf-slim,代码行数:23,代码来源:layers_test.py

示例2: testOutputSizeWithStrideOneSamePaddingNCHW

# 需要导入模块: from tensorflow.python.platform import test [as 别名]
# 或者: from tensorflow.python.platform.test import is_gpu_available [as 别名]
def testOutputSizeWithStrideOneSamePaddingNCHW(self):
    # `NCHW` data format is only supported for `GPU` device.
    if test.is_gpu_available(cuda_only=True):
      with self.session(use_gpu=True) as sess:
        num_filters = 32
        input_size = [5, 3, 10, 12]
        expected_size = [5, num_filters, 10, 12]

        images = random_ops.random_uniform(input_size, seed=1)
        output = layers_lib.conv2d_transpose(
            images,
            num_filters, [3, 3],
            stride=1,
            padding='SAME',
            data_format='NCHW')
        self.assertEqual(output.op.name, 'Conv2d_transpose/Relu')

        sess.run(variables_lib.global_variables_initializer())
        self.assertListEqual(list(output.eval().shape), expected_size) 
开发者ID:google-research,项目名称:tf-slim,代码行数:21,代码来源:layers_test.py

示例3: testOutputSizeWithStrideOneValidPaddingNCHW

# 需要导入模块: from tensorflow.python.platform import test [as 别名]
# 或者: from tensorflow.python.platform.test import is_gpu_available [as 别名]
def testOutputSizeWithStrideOneValidPaddingNCHW(self):
    if test.is_gpu_available(cuda_only=True):
      with self.session(use_gpu=True) as sess:
        num_filters = 32
        input_size = [5, 3, 10, 12]
        expected_size = [5, num_filters, 12, 14]

        images = random_ops.random_uniform(input_size, seed=1)
        output = layers_lib.conv2d_transpose(
            images,
            num_filters, [3, 3],
            stride=1,
            padding='VALID',
            data_format='NCHW')
        self.assertEqual(output.op.name, 'Conv2d_transpose/Relu')

        sess.run(variables_lib.global_variables_initializer())
        self.assertListEqual(list(output.eval().shape), expected_size) 
开发者ID:google-research,项目名称:tf-slim,代码行数:20,代码来源:layers_test.py

示例4: testOutputSizeWithStrideTwoValidPaddingNCHW

# 需要导入模块: from tensorflow.python.platform import test [as 别名]
# 或者: from tensorflow.python.platform.test import is_gpu_available [as 别名]
def testOutputSizeWithStrideTwoValidPaddingNCHW(self):
    if test.is_gpu_available(cuda_only=True):
      with self.session(use_gpu=True) as sess:
        num_filters = 32
        input_size = [5, 3, 9, 11]
        expected_size = [5, num_filters, 19, 23]

        images = random_ops.random_uniform(input_size, seed=1)
        output = layers_lib.conv2d_transpose(
            images,
            num_filters, [3, 3],
            stride=[2, 2],
            padding='VALID',
            data_format='NCHW')
        self.assertEqual(output.op.name, 'Conv2d_transpose/Relu')
        self.assertListEqual(list(output.get_shape().as_list()), expected_size)

        sess.run(variables_lib.global_variables_initializer())
        self.assertListEqual(list(output.eval().shape), expected_size) 
开发者ID:google-research,项目名称:tf-slim,代码行数:21,代码来源:layers_test.py

示例5: testOutputSizeWith1x1StrideTwoSamePaddingNCHW

# 需要导入模块: from tensorflow.python.platform import test [as 别名]
# 或者: from tensorflow.python.platform.test import is_gpu_available [as 别名]
def testOutputSizeWith1x1StrideTwoSamePaddingNCHW(self):
    if test.is_gpu_available(cuda_only=True):
      with self.session(use_gpu=True) as sess:
        num_filters = 1
        input_size = [1, 1, 1, 1]
        expected_size = [1, num_filters, 2, 2]

        images = random_ops.random_uniform(input_size, seed=1)
        output = layers_lib.conv2d_transpose(
            images,
            num_filters, [2, 2],
            stride=[2, 2],
            padding='SAME',
            data_format='NCHW')
        self.assertListEqual(list(output.get_shape().as_list()), expected_size)

        sess.run(variables_lib.global_variables_initializer())
        self.assertEqual(output.op.name, 'Conv2d_transpose/Relu')
        self.assertListEqual(list(output.eval().shape), expected_size) 
开发者ID:google-research,项目名称:tf-slim,代码行数:21,代码来源:layers_test.py

示例6: testOutputSizeWith2x2StrideTwoSamePaddingNCHW

# 需要导入模块: from tensorflow.python.platform import test [as 别名]
# 或者: from tensorflow.python.platform.test import is_gpu_available [as 别名]
def testOutputSizeWith2x2StrideTwoSamePaddingNCHW(self):
    if test.is_gpu_available(cuda_only=True):
      with self.session(use_gpu=True) as sess:
        num_filters = 1
        input_size = [1, 1, 2, 2]
        expected_size = [1, num_filters, 4, 4]

        images = random_ops.random_uniform(input_size, seed=1)
        output = layers_lib.conv2d_transpose(
            images,
            num_filters, [2, 2],
            stride=[2, 2],
            padding='SAME',
            data_format='NCHW')
        sess.run(variables_lib.global_variables_initializer())
        self.assertEqual(output.op.name, 'Conv2d_transpose/Relu')
        self.assertListEqual(list(output.eval().shape), expected_size) 
开发者ID:google-research,项目名称:tf-slim,代码行数:19,代码来源:layers_test.py

示例7: testOutputSizeWith2x2StrideTwoValidPaddingNCHW

# 需要导入模块: from tensorflow.python.platform import test [as 别名]
# 或者: from tensorflow.python.platform.test import is_gpu_available [as 别名]
def testOutputSizeWith2x2StrideTwoValidPaddingNCHW(self):
    if test.is_gpu_available(cuda_only=True):
      with self.session(use_gpu=True) as sess:
        num_filters = 1
        input_size = [1, 1, 2, 2]
        expected_size = [1, num_filters, 4, 4]

        images = random_ops.random_uniform(input_size, seed=1)
        output = layers_lib.conv2d_transpose(
            images,
            num_filters, [2, 2],
            stride=[2, 2],
            padding='VALID',
            data_format='NCHW')
        sess.run(variables_lib.global_variables_initializer())
        self.assertEqual(output.op.name, 'Conv2d_transpose/Relu')
        self.assertListEqual(list(output.eval().shape), expected_size) 
开发者ID:google-research,项目名称:tf-slim,代码行数:19,代码来源:layers_test.py

示例8: testOutputSizeWithStride2x1NCHW

# 需要导入模块: from tensorflow.python.platform import test [as 别名]
# 或者: from tensorflow.python.platform.test import is_gpu_available [as 别名]
def testOutputSizeWithStride2x1NCHW(self):
    if test.is_gpu_available(cuda_only=True):
      with self.session(use_gpu=True) as sess:
        num_filters = 1
        input_size = [1, 1, 3, 2]
        expected_size = [1, num_filters, 6, 5]

        images = random_ops.random_uniform(input_size, seed=1)
        output = layers_lib.conv2d_transpose(
            images,
            num_filters, [2, 4],
            stride=[2, 1],
            padding='VALID',
            data_format='NCHW')
        sess.run(variables_lib.global_variables_initializer())
        self.assertEqual(output.op.name, 'Conv2d_transpose/Relu')
        self.assertListEqual(list(output.eval().shape), expected_size) 
开发者ID:google-research,项目名称:tf-slim,代码行数:19,代码来源:layers_test.py

示例9: testOutputSizeWithStride2x4NCHW

# 需要导入模块: from tensorflow.python.platform import test [as 别名]
# 或者: from tensorflow.python.platform.test import is_gpu_available [as 别名]
def testOutputSizeWithStride2x4NCHW(self):
    if test.is_gpu_available(cuda_only=True):
      with self.session(use_gpu=True) as sess:
        num_filters = 1
        input_size = [1, 1, 3, 2]
        expected_size = [1, num_filters, 6, 8]

        images = random_ops.random_uniform(input_size, seed=1)
        output = layers_lib.conv2d_transpose(
            images,
            num_filters, [2, 4],
            stride=[2, 4],
            padding='VALID',
            data_format='NCHW')
        sess.run(variables_lib.global_variables_initializer())
        self.assertEqual(output.op.name, 'Conv2d_transpose/Relu')
        self.assertListEqual(list(output.eval().shape), expected_size) 
开发者ID:google-research,项目名称:tf-slim,代码行数:19,代码来源:layers_test.py

示例10: testOutputSizeWithStride2x5NCHW

# 需要导入模块: from tensorflow.python.platform import test [as 别名]
# 或者: from tensorflow.python.platform.test import is_gpu_available [as 别名]
def testOutputSizeWithStride2x5NCHW(self):
    if test.is_gpu_available(cuda_only=True):
      with self.session(use_gpu=True) as sess:
        num_filters = 1
        input_size = [1, 1, 3, 2]
        expected_size = [1, num_filters, 6, 10]

        images = random_ops.random_uniform(input_size, seed=1)
        output = layers_lib.conv2d_transpose(
            images,
            num_filters, [2, 4],
            stride=[2, 5],
            padding='VALID',
            data_format='NCHW')
        sess.run(variables_lib.global_variables_initializer())
        self.assertEqual(output.op.name, 'Conv2d_transpose/Relu')
        self.assertListEqual(list(output.eval().shape), expected_size) 
开发者ID:google-research,项目名称:tf-slim,代码行数:19,代码来源:layers_test.py

示例11: testCompareBilinear

# 需要导入模块: from tensorflow.python.platform import test [as 别名]
# 或者: from tensorflow.python.platform.test import is_gpu_available [as 别名]
def testCompareBilinear(self):
    if test.is_gpu_available():
      input_shape = [1, 5, 6, 3]
      target_height = 8
      target_width = 12
      for nptype in [np.float32, np.float64]:
        for align_corners in [True, False]:
          img_np = np.arange(
              0, np.prod(input_shape), dtype=nptype).reshape(input_shape)
          value = {}
          for use_gpu in [True, False]:
            with self.test_session(use_gpu=use_gpu):
              image = constant_op.constant(img_np, shape=input_shape)
              new_size = constant_op.constant([target_height, target_width])
              out_op = image_ops.resize_images(
                  image, new_size,
                  image_ops.ResizeMethod.BILINEAR,
                  align_corners=align_corners)
              value[use_gpu] = out_op.eval()
          self.assertAllClose(value[True], value[False], rtol=1e-5, atol=1e-5) 
开发者ID:tobegit3hub,项目名称:deep_image_model,代码行数:22,代码来源:image_ops_test.py

示例12: _check_has_gpu

# 需要导入模块: from tensorflow.python.platform import test [as 别名]
# 或者: from tensorflow.python.platform.test import is_gpu_available [as 别名]
def _check_has_gpu():
  if not test.is_gpu_available(cuda_only=True):
    raise ValueError(
        """You have asked to run part or all of this on GPU, but it appears
        that no GPU is available. If your machine has GPUs it is possible you
        do not have a version of TensorFlow with GPU support. To build with GPU
        support, add --config=cuda to the build flags.\n """) 
开发者ID:tensorflow,项目名称:benchmarks,代码行数:9,代码来源:benchmark_cnn_test.py

示例13: gpu_availability

# 需要导入模块: from tensorflow.python.platform import test [as 别名]
# 或者: from tensorflow.python.platform.test import is_gpu_available [as 别名]
def gpu_availability():
    """
    Detect gpu on user system

    :return: Whether at least a CUDA compatible GPU is detected and usable
    :rtype: bool
    :History: 2018-Apr-25 - Written - Henry Leung (University of Toronto)
    """
    # assume if using tensorflow-gpu, then Nvidia GPU is available
    if is_built_with_cuda():
        return is_gpu_available()
    else:
        return is_built_with_cuda() 
开发者ID:henrysky,项目名称:astroNN,代码行数:15,代码来源:nn_tools.py

示例14: setUpClass

# 需要导入模块: from tensorflow.python.platform import test [as 别名]
# 或者: from tensorflow.python.platform.test import is_gpu_available [as 别名]
def setUpClass(cls):
    if test.is_gpu_available():
      cls._expected_partition_graph_count = 2
      cls._expected_num_devices = 2
      cls._main_device = "/job:localhost/replica:0/task:0/gpu:0"
    else:
      cls._expected_partition_graph_count = 1
      cls._expected_num_devices = 1
      cls._main_device = "/job:localhost/replica:0/task:0/cpu:0" 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:11,代码来源:session_debug_testlib.py

示例15: testMaxPoolingWithArgmax

# 需要导入模块: from tensorflow.python.platform import test [as 别名]
# 或者: from tensorflow.python.platform.test import is_gpu_available [as 别名]
def testMaxPoolingWithArgmax(self):
        # MaxPoolWithArgMax is implemented only on CUDA.
        if not test.is_gpu_available(cuda_only=True):
            return
        '''[[[[  1.   2.]
              [  3.   4.]
              [  5.   6.]]
             [[  7.   8.]
              [  9.  10.]
              [ 11.  12.]]
             [[ 13.  14.]
              [ 15.  16.]
              [ 17.  18.]]]]'''
        tensor_input = [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0,
                        10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0]
        with self.test_session(use_gpu=True) as sess:
            t = constant_op.constant(tensor_input, shape=[1, 3, 3, 2])
            out_op, argmax_op = segnet_vgg.max_pool_with_argmax(t)
            out, argmax = sess.run([out_op, argmax_op])
            self.assertShapeEqual(out, out_op)
            self.assertShapeEqual(argmax, argmax_op)
            '''[[[9, 10]
                 [11, 12]]
                [[15, 16]
                 [17, 18]]]'''
            self.assertAllClose(out.ravel(), [9., 10., 11., 12., 15., 16., 17., 18.])
            self.assertAllEqual(argmax.ravel(), [8, 9, 10, 11, 14, 15, 16, 17]) 
开发者ID:mengli,项目名称:MachineLearning,代码行数:29,代码来源:segnet_vgg_test.py


注:本文中的tensorflow.python.platform.test.is_gpu_available方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。