本文整理汇总了Python中tensorflow.python.platform.app.run方法的典型用法代码示例。如果您正苦于以下问题:Python app.run方法的具体用法?Python app.run怎么用?Python app.run使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.python.platform.app
的用法示例。
在下文中一共展示了app.run方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: report_benchmark
# 需要导入模块: from tensorflow.python.platform import app [as 别名]
# 或者: from tensorflow.python.platform.app import run [as 别名]
def report_benchmark(
self,
iters=None,
cpu_time=None,
wall_time=None,
throughput=None,
extras=None,
name=None):
"""Report a benchmark.
Args:
iters: (optional) How many iterations were run
cpu_time: (optional) Total cpu time in seconds
wall_time: (optional) Total wall time in seconds
throughput: (optional) Throughput (in MB/s)
extras: (optional) Dict mapping string keys to additional benchmark info.
Values may be either floats or values that are convertible to strings.
name: (optional) Override the BenchmarkEntry name with `name`.
Otherwise it is inferred from the top-level method name.
"""
name = self._get_name(overwrite_name=name)
_global_report_benchmark(
name=name, iters=iters, cpu_time=cpu_time, wall_time=wall_time,
throughput=throughput, extras=extras)
示例2: benchmarks_main
# 需要导入模块: from tensorflow.python.platform import app [as 别名]
# 或者: from tensorflow.python.platform.app import run [as 别名]
def benchmarks_main(true_main, argv=None):
"""Run benchmarks as declared in argv.
Args:
true_main: True main function to run if benchmarks are not requested.
argv: the command line arguments (if None, uses sys.argv).
"""
if argv is None:
argv = sys.argv
found_arg = [arg for arg in argv
if arg.startswith("--benchmarks=")
or arg.startswith("-benchmarks=")]
if found_arg:
# Remove --benchmarks arg from sys.argv
argv.remove(found_arg[0])
regex = found_arg[0].split("=")[1]
app.run(lambda _: _run_benchmarks(regex), argv=argv)
else:
true_main()
示例3: main
# 需要导入模块: from tensorflow.python.platform import app [as 别名]
# 或者: from tensorflow.python.platform.app import run [as 别名]
def main(argv=None):
imgnames = filter(lambda x: x.lower().endswith(".jpg") or x.lower().endswith(".png"), os.listdir(FLAGS.srcimgs))
imgs = np.asarray(map(lambda x: preprocess_yadav(x),
map(lambda x: cv2.resize(read_img(os.path.join(FLAGS.srcimgs, x)), (FLAGS.img_cols, FLAGS.img_rows)),
imgnames))
, dtype=np.float32)
print 'Loaded images from %s'%FLAGS.srcimgs
sys.stdout.flush()
results = []
with tf.Session() as sess:
model = YadavModel(train=False)
saver = tf.train.Saver()
saver.restore(sess, FLAGS.weights)
print 'Loaded model from %s'%FLAGS.weights
sys.stdout.flush()
output = sess.run(model.labels_pred, feed_dict={model.features: imgs, model.keep_prob: 1.0})
for i in range(len(imgs)):
results.append((imgnames[i], top3_as_string(output, i)))
for i in range(len(results)):
print results[i][0], results[i][1]
示例4: main
# 需要导入模块: from tensorflow.python.platform import app [as 别名]
# 或者: from tensorflow.python.platform.app import run [as 别名]
def main(argv=None):
X_train, Y_train, X_test, Y_test = gtsrb(FLAGS.train_dataset, FLAGS.test_dataset, labels_filename=FLAGS.labels)
print 'Loaded GTSRB data'
X_train = np.asarray(map(lambda x: pre_process_image(x), X_train.astype(np.uint8)),dtype=np.float32)
X_test = np.asarray(map(lambda x: pre_process_image(x), X_test.astype(np.uint8)),dtype=np.float32)
global total_iterations
global best_validation_accuracy
global last_improvement
global best_test_accuracy
global val_acc_list
global batch_acc_list
global test_acc_list
with tf.Session() as sess:
model = YadavModel()
sess.run(tf.initialize_all_variables())
#X_train, Y_train = gen_transformed_data(X_train,Y_train,43,10,30,5,5,1)
print(X_train.shape)
print(Y_train.shape)
optimize(sess, model, X_train, Y_train, X_test, Y_test, 10000, 128)
示例5: main
# 需要导入模块: from tensorflow.python.platform import app [as 别名]
# 或者: from tensorflow.python.platform.app import run [as 别名]
def main(argv=None):
with tf.device(FLAGS.device):
with tf.Session() as sess:
print "Noise loaded from", FLAGS.model_path
print "Mask", FLAGS.attack_mask
print "Source image", FLAGS.src_image
bimg = cv2.resize(read_img(FLAGS.src_image), (FLAGS.img_rows, FLAGS.img_cols))/255.0 - 0.5
noise= tf.Variable(tf.random_uniform( \
[FLAGS.img_rows, FLAGS.img_cols, FLAGS.nb_channels], -0.5, 0.5), \
name='noiseattack/noise', collections=[tf.GraphKeys.GLOBAL_VARIABLES, 'adv_var'])
saver = tf.train.Saver(var_list=[noise])
saver.restore(sess, FLAGS.model_path)
noise_val = sess.run(noise)
write_img('noise.png', (noise_val)*255.0)
mask = read_img(FLAGS.attack_mask)/255.0
noise_val = noise_val*mask
write_img(FLAGS.output_path,(bimg+noise_val+0.5)*255)
print "Wrote image to", FLAGS.output_path
示例6: benchmarks_main
# 需要导入模块: from tensorflow.python.platform import app [as 别名]
# 或者: from tensorflow.python.platform.app import run [as 别名]
def benchmarks_main(true_main):
"""Run benchmarks as declared in args.
Args:
true_main: True main function to run if benchmarks are not requested.
"""
argv = sys.argv
found_arg = [arg for arg in argv
if arg.startswith("--benchmarks=")
or arg.startswith("-benchmarks=")]
if found_arg:
# Remove --benchmarks arg from sys.argv
argv.remove(found_arg[0])
regex = found_arg[0].split("=")[1]
app.run(lambda _: _run_benchmarks(regex))
else:
true_main()
示例7: _get_tf2_parser
# 需要导入模块: from tensorflow.python.platform import app [as 别名]
# 或者: from tensorflow.python.platform.app import run [as 别名]
def _get_tf2_parser():
"""Returns ArgumentParser for tflite_convert for TensorFlow 2.0."""
parser = argparse.ArgumentParser(
description=("Command line tool to run TensorFlow Lite Converter."))
# Output file flag.
parser.add_argument(
"--output_file",
type=str,
help="Full filepath of the output file.",
required=True)
# Input file flags.
input_file_group = parser.add_mutually_exclusive_group(required=True)
input_file_group.add_argument(
"--saved_model_dir",
type=str,
help="Full path of the directory containing the SavedModel.")
input_file_group.add_argument(
"--keras_model_file",
type=str,
help="Full filepath of HDF5 file containing tf.Keras model.")
return parser
示例8: report_benchmark
# 需要导入模块: from tensorflow.python.platform import app [as 别名]
# 或者: from tensorflow.python.platform.app import run [as 别名]
def report_benchmark(
self,
iters=None,
cpu_time=None,
wall_time=None,
throughput=None,
extras=None,
name=None):
"""Report a benchmark.
Args:
iters: (optional) How many iterations were run
cpu_time: (optional) median or mean cpu time in seconds.
wall_time: (optional) median or mean wall time in seconds.
throughput: (optional) Throughput (in MB/s)
extras: (optional) Dict mapping string keys to additional benchmark info.
Values may be either floats or values that are convertible to strings.
name: (optional) Override the BenchmarkEntry name with `name`.
Otherwise it is inferred from the top-level method name.
"""
name = self._get_name(overwrite_name=name)
_global_report_benchmark(
name=name, iters=iters, cpu_time=cpu_time, wall_time=wall_time,
throughput=throughput, extras=extras)
开发者ID:PacktPublishing,项目名称:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代码行数:26,代码来源:benchmark.py
示例9: main
# 需要导入模块: from tensorflow.python.platform import app [as 别名]
# 或者: from tensorflow.python.platform.app import run [as 别名]
def main(argv):
# Set TF random seed to improve reproducibility
tf.set_random_seed(1234)
input_shape = [FLAGS.batch_size, 224, 224, 3]
x_src = tf.abs(tf.random_uniform(input_shape, 0., 1.))
x_guide = tf.abs(tf.random_uniform(input_shape, 0., 1.))
print("Input shape:")
print(input_shape)
model = make_imagenet_cnn(input_shape)
attack = FastFeatureAdversaries(model)
attack_params = {'eps': 0.3, 'clip_min': 0., 'clip_max': 1.,
'nb_iter': FLAGS.nb_iter, 'eps_iter': 0.01,
'layer': FLAGS.layer}
x_adv = attack.generate(x_src, x_guide, **attack_params)
h_adv = model.fprop(x_adv)[FLAGS.layer]
h_src = model.fprop(x_src)[FLAGS.layer]
h_guide = model.fprop(x_guide)[FLAGS.layer]
with tf.Session() as sess:
init = tf.global_variables_initializer()
sess.run(init)
ha, hs, hg, xa, xs, xg = sess.run(
[h_adv, h_src, h_guide, x_adv, x_src, x_guide])
print("L2 distance between source and adversarial example `%s`: %.4f" %
(FLAGS.layer, ((hs-ha)*(hs-ha)).sum()))
print("L2 distance between guide and adversarial example `%s`: %.4f" %
(FLAGS.layer, ((hg-ha)*(hg-ha)).sum()))
print("L2 distance between source and guide `%s`: %.4f" %
(FLAGS.layer, ((hg-hs)*(hg-hs)).sum()))
print("Maximum perturbation: %.4f" % np.abs((xa-xs)).max())
print("Original features: ")
print(hs[:10, :10])
print("Adversarial features: ")
print(ha[:10, :10])
示例10: _run_benchmarks
# 需要导入模块: from tensorflow.python.platform import app [as 别名]
# 或者: from tensorflow.python.platform.app import run [as 别名]
def _run_benchmarks(regex):
"""Run benchmarks that match regex `regex`.
This function goes through the global benchmark registry, and matches
benchmark class and method names of the form
`module.name.BenchmarkClass.benchmarkMethod` to the given regex.
If a method matches, it is run.
Args:
regex: The string regular expression to match Benchmark classes against.
"""
registry = list(GLOBAL_BENCHMARK_REGISTRY)
# Match benchmarks in registry against regex
for benchmark in registry:
benchmark_name = "%s.%s" % (benchmark.__module__, benchmark.__name__)
attrs = dir(benchmark)
# Don't instantiate the benchmark class unless necessary
benchmark_instance = None
for attr in attrs:
if not attr.startswith("benchmark"):
continue
candidate_benchmark_fn = getattr(benchmark, attr)
if not callable(candidate_benchmark_fn):
continue
full_benchmark_name = "%s.%s" % (benchmark_name, attr)
if regex == "all" or re.search(regex, full_benchmark_name):
# Instantiate the class if it hasn't been instantiated
benchmark_instance = benchmark_instance or benchmark()
# Get the method tied to the class
instance_benchmark_fn = getattr(benchmark_instance, attr)
# Call the instance method
instance_benchmark_fn()
示例11: main
# 需要导入模块: from tensorflow.python.platform import app [as 别名]
# 或者: from tensorflow.python.platform.app import run [as 别名]
def main(argv=None): # pylint: disable=function-redefined
def main_wrapper():
args = argv
if args is None:
args = sys.argv
return app.run(main=g_main, argv=args)
benchmark.benchmarks_main(true_main=main_wrapper)
示例12: restore_or_init_noise
# 需要导入模块: from tensorflow.python.platform import app [as 别名]
# 或者: from tensorflow.python.platform.app import run [as 别名]
def restore_or_init_noise(sess, attack_graph, noise_path):
if noise_path != "":
noise_restorer = tf.train.Saver(var_list=[attack_graph.noise])
noise_restorer.restore(sess, noise_path)
return True
else:
sess.run(attack_graph.init_noise)
return False
示例13: __init__
# 需要导入模块: from tensorflow.python.platform import app [as 别名]
# 或者: from tensorflow.python.platform.app import run [as 别名]
def __init__(self, just_apply_noise, batch_size):
self.just_apply_noise = just_apply_noise
tfconfig = tf.ConfigProto(allow_soft_placement=True)
tfconfig.gpu_options.allow_growth = FLAGS.tf_allow_growth
self.sess = tf.Session(config=tfconfig)
with self.sess.as_default():
self.attack_graph = AttackGraph(batch_size=batch_size, \
image_height=FLAGS.image_height, \
image_width=FLAGS.image_width, \
image_channels=FLAGS.image_channels, \
noise_initializer=get_noise_init_from_flags(), \
num_classes=FLAGS.num_classes, \
pixel_low=FLAGS.pixel_low, \
pixel_high=FLAGS.pixel_high)
if not self.just_apply_noise:
self.losses_dict = None
self.reg_losses = get_reg_losses_from_flags()
self.optimization_op = self.attack_graph.build_everything(inception, \
self.reg_losses, \
epsilon=FLAGS.adam_epsilon, \
beta1=FLAGS.adam_beta1, \
beta2=FLAGS.adam_beta2)
self.sess.run(self.attack_graph.init_adam)
restore_model_vars(self.sess, self.attack_graph.model_vars, FLAGS.model_path)
_, self.train_data = read_data_inception(FLAGS.attack_srcdir)
_, self.val_data = read_data_inception(FLAGS.validation_set)
self.saver = tf.train.Saver(max_to_keep=2, \
var_list=[self.attack_graph.noise])
restore_or_init_noise(self.sess, self.attack_graph, FLAGS.noise_restore_checkpoint)
示例14: calculate_acc
# 需要导入模块: from tensorflow.python.platform import app [as 别名]
# 或者: from tensorflow.python.platform.app import run [as 别名]
def calculate_acc(self):
assert FLAGS.validation_set is not None
assert self.val_data is not None
val_feed_dict = self.create_feed_dict(np.array(self.val_data), self.attack_graph)
net_predictions = self.sess.run(tf.argmax(self.attack_graph.adv_pred, axis=1), \
feed_dict=val_feed_dict)
labels = [FLAGS.attack_target for _ in range(len(net_predictions))]
val_feed_dict = None
gc.collect()
return accuracy_score(labels, net_predictions, normalize=True)
示例15: extract_noise
# 需要导入模块: from tensorflow.python.platform import app [as 别名]
# 或者: from tensorflow.python.platform.app import run [as 别名]
def extract_noise(self, folder, fnames, data):
feed_dict = self.create_feed_dict(data, self.attack_graph)
noisy_images = self.sess.run( \
tf.clip_by_value(self.attack_graph.noisy_inputs, FLAGS.pixel_low, FLAGS.pixel_high), \
feed_dict=feed_dict)
save_folder = os.path.join(folder, "noisy_%s"%FLAGS.noise_restore_checkpoint)
if not os.path.isdir(save_folder):
os.makedirs(save_folder)
for name, img in zip(fnames, noisy_images):
fpath = os.path.join(save_folder, name)
print("Writing %s"%fpath)
write_reverse_preprocess_inception(fpath, img)