当前位置: 首页>>代码示例>>Python>>正文


Python ops.variables方法代码示例

本文整理汇总了Python中tensorflow.python.ops.variables方法的典型用法代码示例。如果您正苦于以下问题:Python ops.variables方法的具体用法?Python ops.variables怎么用?Python ops.variables使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow.python.ops的用法示例。


在下文中一共展示了ops.variables方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: local_variable

# 需要导入模块: from tensorflow.python import ops [as 别名]
# 或者: from tensorflow.python.ops import variables [as 别名]
def local_variable(initial_value,
                   validate_shape=True,
                   name=None,
                   use_resource=None):
  """Create a variable with a value and add it to `GraphKeys.LOCAL_VARIABLES`.

  Args:
    initial_value: See variables.Variable.__init__.
    validate_shape: See variables.Variable.__init__.
    name: See variables.Variable.__init__.
    use_resource: If `True` use a ResourceVariable instead of a Variable.

  Returns:
    New variable.
  """
  return variable_scope.variable(
      initial_value,
      trainable=False,
      collections=[ops.GraphKeys.LOCAL_VARIABLES],
      validate_shape=validate_shape,
      use_resource=use_resource,
      name=name) 
开发者ID:taehoonlee,项目名称:tensornets,代码行数:24,代码来源:variables.py

示例2: global_variable

# 需要导入模块: from tensorflow.python import ops [as 别名]
# 或者: from tensorflow.python.ops import variables [as 别名]
def global_variable(initial_value,
                    validate_shape=True,
                    name=None,
                    use_resource=None):
  """Create a variable with a value and add it to `GraphKeys.GLOBAL_VARIABLES`.

  Args:
    initial_value: See variables.Variable.__init__.
    validate_shape: See variables.Variable.__init__.
    name: See variables.Variable.__init__.
    use_resource: If `True` use a ResourceVariable instead of a Variable.

  Returns:
    New variable.
  """
  return variable_scope.variable(
      initial_value,
      trainable=False,
      collections=[ops.GraphKeys.GLOBAL_VARIABLES],
      validate_shape=validate_shape,
      use_resource=use_resource,
      name=name) 
开发者ID:taehoonlee,项目名称:tensornets,代码行数:24,代码来源:variables.py

示例3: get_variables

# 需要导入模块: from tensorflow.python import ops [as 别名]
# 或者: from tensorflow.python.ops import variables [as 别名]
def get_variables(scope=None,
                  suffix=None,
                  collection=ops.GraphKeys.GLOBAL_VARIABLES):
  """Gets the list of variables, filtered by scope and/or suffix.

  Args:
    scope: an optional scope for filtering the variables to return. Can be a
      variable scope or a string.
    suffix: an optional suffix for filtering the variables to return.
    collection: in which collection search for. Defaults to
      `GraphKeys.GLOBAL_VARIABLES`.

  Returns:
    a list of variables in collection with scope and suffix.
  """
  if isinstance(scope, variable_scope.VariableScope):
    scope = scope.name
  if suffix is not None:
    if ':' not in suffix:
      suffix += ':'
    scope = (scope or '') + '.*' + suffix
  return ops.get_collection(collection, scope) 
开发者ID:taehoonlee,项目名称:tensornets,代码行数:24,代码来源:variables.py

示例4: get_variables

# 需要导入模块: from tensorflow.python import ops [as 别名]
# 或者: from tensorflow.python.ops import variables [as 别名]
def get_variables(scope=None,
                  suffix=None,
                  collection=ops.GraphKeys.GLOBAL_VARIABLES):
  """Gets the list of variables, filtered by scope and/or suffix.

  Args:
    scope: an optional scope for filtering the variables to return. Can be a
      variable scope or a string.
    suffix: an optional suffix for filtering the variables to return.
    collection: in which collection search for. Defaults to
      `GraphKeys.GLOBAL_VARIABLES`.

  Returns:
    a list of variables in collection with scope and suffix.
  """
  if scope and isinstance(scope, variable_scope.VariableScope):
    scope = scope.name
  if suffix is not None:
    if ':' not in suffix:
      suffix += ':'
    scope = (scope or '') + '.*' + suffix
  return ops.get_collection(collection, scope) 
开发者ID:google-research,项目名称:tf-slim,代码行数:24,代码来源:variables.py

示例5: _sync_variables_ops

# 需要导入模块: from tensorflow.python import ops [as 别名]
# 或者: from tensorflow.python.ops import variables [as 别名]
def _sync_variables_ops(ctx):
  """Create varriables synchronization ops.

  Gets the variables back from TPU nodes. This means the variables updated
  by TPU will now be *synced* to host memory.
  In BROADCAST mode, we skip this sync since the variables are ususally too
  big to transmit via RPC.

  Args:
    ctx: A `_InternalTPUContext` instance with mode.

  Returns:
    A list of sync ops.
  """

  if not ctx.is_input_broadcast_with_iterators():
    return [
        tf.debugging.check_numerics(v.read_value(),
                                    'Gradient for %s is NaN' % v.name).op
        for v in tf.compat.v1.trainable_variables()
    ]
  else:
    return [tf.no_op()] 
开发者ID:tensorflow,项目名称:estimator,代码行数:25,代码来源:tpu_estimator.py

示例6: get_model_variables

# 需要导入模块: from tensorflow.python import ops [as 别名]
# 或者: from tensorflow.python.ops import variables [as 别名]
def get_model_variables(scope=None, suffix=None):
  """Gets the list of model variables, filtered by scope and/or suffix.

  Args:
    scope: an optional scope for filtering the variables to return.
    suffix: an optional suffix for filtering the variables to return.

  Returns:
    a list of variables in collection with scope and suffix.
  """
  return get_variables(scope, suffix, ops.GraphKeys.MODEL_VARIABLES) 
开发者ID:taehoonlee,项目名称:tensornets,代码行数:13,代码来源:variables.py

示例7: get_local_variables

# 需要导入模块: from tensorflow.python import ops [as 别名]
# 或者: from tensorflow.python.ops import variables [as 别名]
def get_local_variables(scope=None, suffix=None):
  """Gets the list of local variables, filtered by scope and/or suffix.

  Args:
    scope: an optional scope for filtering the variables to return.
    suffix: an optional suffix for filtering the variables to return.

  Returns:
    a list of variables in collection with scope and suffix.
  """
  return get_variables(scope, suffix, ops.GraphKeys.LOCAL_VARIABLES) 
开发者ID:taehoonlee,项目名称:tensornets,代码行数:13,代码来源:variables.py

示例8: get_variables_to_restore

# 需要导入模块: from tensorflow.python import ops [as 别名]
# 或者: from tensorflow.python.ops import variables [as 别名]
def get_variables_to_restore(include=None, exclude=None):
  """Gets the list of the variables to restore.

  Args:
    include: an optional list/tuple of scope strings for filtering which
      variables from the VARIABLES collection to include. None would include all
      the variables.
    exclude: an optional list/tuple of scope strings for filtering which
      variables from the VARIABLES collection to exclude. None it would not
      exclude any.

  Returns:
    a list of variables to restore.

  Raises:
    TypeError: include or exclude is provided but is not a list or a tuple.
  """
  if include is None:
    # Include all variables.
    vars_to_include = get_variables()
  else:
    if not isinstance(include, (list, tuple)):
      raise TypeError('include is provided but is not a list or a tuple.')
    vars_to_include = []
    for scope in include:
      vars_to_include += get_variables(scope)
  vars_to_exclude = set()
  if exclude is not None:
    if not isinstance(exclude, (list, tuple)):
      raise TypeError('exclude is provided but is not a list or a tuple.')
    for scope in exclude:
      vars_to_exclude |= set(get_variables(scope))
  # Exclude the variables in vars_to_exclude
  return [v for v in vars_to_include if v not in vars_to_exclude] 
开发者ID:taehoonlee,项目名称:tensornets,代码行数:36,代码来源:variables.py

示例9: get_variables_by_suffix

# 需要导入模块: from tensorflow.python import ops [as 别名]
# 或者: from tensorflow.python.ops import variables [as 别名]
def get_variables_by_suffix(suffix, scope=None):
  """Gets the list of variables that end with the given suffix.

  Args:
    suffix: suffix for filtering the variables to return.
    scope: an optional scope for filtering the variables to return.

  Returns:
    a copied list of variables with the given name and prefix.
  """
  return get_variables(scope=scope, suffix=suffix) 
开发者ID:taehoonlee,项目名称:tensornets,代码行数:13,代码来源:variables.py

示例10: get_variables_by_name

# 需要导入模块: from tensorflow.python import ops [as 别名]
# 或者: from tensorflow.python.ops import variables [as 别名]
def get_variables_by_name(given_name, scope=None):
  """Gets the list of variables that were given that name.

  Args:
    given_name: name given to the variable without any scope.
    scope: an optional scope for filtering the variables to return.

  Returns:
    a copied list of variables with the given name and scope.
  """
  suffix = '/' + given_name + ':|^' + given_name + ':'
  return get_variables(scope=scope, suffix=suffix) 
开发者ID:taehoonlee,项目名称:tensornets,代码行数:14,代码来源:variables.py

示例11: assign_from_values_fn

# 需要导入模块: from tensorflow.python import ops [as 别名]
# 或者: from tensorflow.python.ops import variables [as 别名]
def assign_from_values_fn(var_names_to_values):
  """Returns a function that assigns specific variables from the given values.

  This function provides a mechanism for performing assignment of variables
  to values in a way that does not fill the graph with large assignment values.

  Args:
    var_names_to_values: A map from variable names to values.

  Returns:
    A function that takes a single argument, a `tf.compat.v1.Session`, that
    applies the
    assignment operation.

  Raises:
    ValueError: if any of the given variable names were not found.
  """
  assign_op, feed_dict = assign_from_values(var_names_to_values)

  def callback(session):
    return session.run(assign_op, feed_dict)

  return callback


# pylint: disable=protected-access
# Currently variable_scope doesn't provide very good APIs to access
# all variables under scope and retrieve and check existing scopes. 
开发者ID:taehoonlee,项目名称:tensornets,代码行数:30,代码来源:variables.py

示例12: _init_from_proto

# 需要导入模块: from tensorflow.python import ops [as 别名]
# 或者: from tensorflow.python.ops import variables [as 别名]
def _init_from_proto(self, variable_def, import_scope=None):
    """Initializes from `VariableDef` proto."""
    assert isinstance(variable_def, variable_pb2.VariableDef)
    if not variable_def.is_resource:
      raise ValueError("Trying to restore Variable as ResourceVariable.")

    # Create from variable_def.
    g = ops.get_default_graph()
    self._handle = g.as_graph_element(
        ops.prepend_name_scope(variable_def.variable_name,
                               import_scope=import_scope))
    self._initialize_op = g.as_graph_element(
        ops.prepend_name_scope(variable_def.initializer_name,
                               import_scope=import_scope))
    if variable_def.snapshot_name:
      self._cached_value = g.as_graph_element(
          ops.prepend_name_scope(variable_def.snapshot_name,
                                 import_scope=import_scope))
    else:
      self._cached_value = None
    if variable_def.HasField("save_slice_info_def"):
      self._save_slice_info = variables.Variable.SaveSliceInfo(
          save_slice_info_def=variable_def.save_slice_info_def)
    else:
      self._save_slice_info = None
    self._caching_device = None
    self._dtype = dtypes.as_dtype(self._handle.op.get_attr("dtype"))
    self._graph_element = self.value() 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:30,代码来源:resource_variable_ops.py

示例13: _from_proto_fn

# 需要导入模块: from tensorflow.python import ops [as 别名]
# 或者: from tensorflow.python.ops import variables [as 别名]
def _from_proto_fn(v, import_scope=None):
  """Creates Variable or ResourceVariable from VariableDef as needed."""
  if v.is_resource:
    return ResourceVariable.from_proto(v, import_scope=import_scope)
  return variables.Variable.from_proto(v, import_scope=import_scope) 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:7,代码来源:resource_variable_ops.py

示例14: minimize

# 需要导入模块: from tensorflow.python import ops [as 别名]
# 或者: from tensorflow.python.ops import variables [as 别名]
def minimize(self, loss, global_step=None, var_list=None,
               gate_gradients=GATE_OP, aggregation_method=None,
               colocate_gradients_with_ops=False, name=None,
               grad_loss=None):
    """Adapted from Tensorflow Optimizer base class member function:
    Add operations to minimize `loss` by updating `var_list`.
    This method simply combines calls `compute_gradients()` and
    `apply_gradients()`. If you want to process the gradient before applying
    them call `tf.gradients()` and `self.apply_gradients()` explicitly instead
    of using this function.
    """
    grads_and_vars = self._optimizer.compute_gradients(
        loss, var_list=var_list, gate_gradients=gate_gradients,
        aggregation_method=aggregation_method,
        colocate_gradients_with_ops=colocate_gradients_with_ops,
        grad_loss=grad_loss)

    vars_with_grad = [v for g, v in grads_and_vars if g is not None]
    if not vars_with_grad:
      raise ValueError(
          "No gradients provided for any variable, check your graph for ops"
          " that do not support gradients, between variables %s and loss %s." %
          ([str(v) for _, v in grads_and_vars], loss))
    for g, v in grads_and_vars:
      print("g ", g)
      print("v ", v)

    return self.apply_gradients(grads_and_vars) 
开发者ID:Zehaos,项目名称:MobileNet,代码行数:30,代码来源:yellowfin.py

示例15: __init__

# 需要导入模块: from tensorflow.python import ops [as 别名]
# 或者: from tensorflow.python.ops import variables [as 别名]
def __init__(self,
               ctx,
               enqueue_ops,
               dequeue_ops,
               tpu_compile_op,
               run_infeed_loop_on_coordinator=True,
               rendezvous=None,
               master=None,
               session_config=None,
               tpu_init_ops=None,
               outfeed_every_n_steps=1):
    self._master_job = ctx.master_job
    self._enqueue_ops = enqueue_ops
    self._dequeue_ops = dequeue_ops
    self._rendezvous = rendezvous
    self._master = master
    self._session_config = session_config
    self._init_ops = list(tpu_init_ops or [])
    if ctx.embedding_config is None:
      self._embedding_layer_config = None
    else:
      self._embedding_layer_config = (
          ctx.embedding_config.tpu_embedding.config_proto)
    self._run_infeed_loop_on_coordinator = run_infeed_loop_on_coordinator
    self._initial_infeed_sleep_secs = (
        ctx.config.tpu_config.initial_infeed_sleep_secs)
    self._tpu_compile_op = tpu_compile_op

    # When using model parallelism, the TPU is pre-initialized at startup to
    # fetch mesh information. We skip re-initializing it here for
    # MeshTensorFlow since it places variables on TPU directly. Reinitialize tpu
    # is causing the variable corruption since the previous allocated memory
    # might be overwritten for other purpose.
    if (ctx.model_parallelism_enabled and
        (ctx.config.tpu_config.per_host_input_for_training is
         tpu_config.InputPipelineConfig.BROADCAST)):
      self._should_initialize_tpu = False
    else:
      self._should_initialize_tpu = True
    self._outfeed_every_n_steps = outfeed_every_n_steps 
开发者ID:tensorflow,项目名称:estimator,代码行数:42,代码来源:tpu_estimator.py


注:本文中的tensorflow.python.ops.variables方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。