本文整理汇总了Python中tensorflow.python.ops.variable_scope.variable方法的典型用法代码示例。如果您正苦于以下问题:Python variable_scope.variable方法的具体用法?Python variable_scope.variable怎么用?Python variable_scope.variable使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.python.ops.variable_scope
的用法示例。
在下文中一共展示了variable_scope.variable方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _create_slots
# 需要导入模块: from tensorflow.python.ops import variable_scope [as 别名]
# 或者: from tensorflow.python.ops.variable_scope import variable [as 别名]
def _create_slots(self, var_list):
first_var = min(var_list, key=lambda x: x.name)
create_new = self._beta1_power is None
if not create_new and context.in_graph_mode():
create_new = (self._beta1_power.graph is not first_var.graph)
if create_new:
with ops.colocate_with(first_var):
self._beta1_power = variable_scope.variable(
self._beta1, name="beta1_power", trainable=False)
self._beta2_power = variable_scope.variable(
self._beta2, name="beta2_power", trainable=False)
# Create slots for the first and second moments.
for v in var_list:
self._zeros_slot(v, "m", self._name)
self._zeros_slot(v, "v", self._name)
self._zeros_slot(v, "vhat", self._name)
示例2: local_variable
# 需要导入模块: from tensorflow.python.ops import variable_scope [as 别名]
# 或者: from tensorflow.python.ops.variable_scope import variable [as 别名]
def local_variable(initial_value,
validate_shape=True,
name=None,
use_resource=None):
"""Create a variable with a value and add it to `GraphKeys.LOCAL_VARIABLES`.
Args:
initial_value: See variables.Variable.__init__.
validate_shape: See variables.Variable.__init__.
name: See variables.Variable.__init__.
use_resource: If `True` use a ResourceVariable instead of a Variable.
Returns:
New variable.
"""
return variable_scope.variable(
initial_value,
trainable=False,
collections=[ops.GraphKeys.LOCAL_VARIABLES],
validate_shape=validate_shape,
use_resource=use_resource,
name=name)
示例3: global_variable
# 需要导入模块: from tensorflow.python.ops import variable_scope [as 别名]
# 或者: from tensorflow.python.ops.variable_scope import variable [as 别名]
def global_variable(initial_value,
validate_shape=True,
name=None,
use_resource=None):
"""Create a variable with a value and add it to `GraphKeys.GLOBAL_VARIABLES`.
Args:
initial_value: See variables.Variable.__init__.
validate_shape: See variables.Variable.__init__.
name: See variables.Variable.__init__.
use_resource: If `True` use a ResourceVariable instead of a Variable.
Returns:
New variable.
"""
return variable_scope.variable(
initial_value,
trainable=False,
collections=[ops.GraphKeys.GLOBAL_VARIABLES],
validate_shape=validate_shape,
use_resource=use_resource,
name=name)
示例4: get_variables
# 需要导入模块: from tensorflow.python.ops import variable_scope [as 别名]
# 或者: from tensorflow.python.ops.variable_scope import variable [as 别名]
def get_variables(scope=None,
suffix=None,
collection=ops.GraphKeys.GLOBAL_VARIABLES):
"""Gets the list of variables, filtered by scope and/or suffix.
Args:
scope: an optional scope for filtering the variables to return. Can be a
variable scope or a string.
suffix: an optional suffix for filtering the variables to return.
collection: in which collection search for. Defaults to
`GraphKeys.GLOBAL_VARIABLES`.
Returns:
a list of variables in collection with scope and suffix.
"""
if isinstance(scope, variable_scope.VariableScope):
scope = scope.name
if suffix is not None:
if ':' not in suffix:
suffix += ':'
scope = (scope or '') + '.*' + suffix
return ops.get_collection(collection, scope)
示例5: get_variable_full_name
# 需要导入模块: from tensorflow.python.ops import variable_scope [as 别名]
# 或者: from tensorflow.python.ops.variable_scope import variable [as 别名]
def get_variable_full_name(var):
"""Returns the full name of a variable.
For normal Variables, this is the same as the var.op.name. For
sliced or PartitionedVariables, this name is the same for all the
slices/partitions. In both cases, this is normally the name used in
a checkpoint file.
Args:
var: A `Variable` object.
Returns:
A string that is the full name.
"""
if var._save_slice_info:
return var._save_slice_info.full_name
else:
return var.op.name
# TODO(nsilberman): add flag to load exponential moving averages instead
#
# TODO(sguada): Update docs in slim/g3doc/index.md to describe
# the new feature where the var_list dictionary can have values that
# are each a list of Variables.
示例6: _create_local
# 需要导入模块: from tensorflow.python.ops import variable_scope [as 别名]
# 或者: from tensorflow.python.ops.variable_scope import variable [as 别名]
def _create_local(name, shape, collections=None, validate_shape=True,
dtype=dtypes.float32):
"""Creates a new local variable.
Args:
name: The name of the new or existing variable.
shape: Shape of the new or existing variable.
collections: A list of collection names to which the Variable will be added.
validate_shape: Whether to validate the shape of the variable.
dtype: Data type of the variables.
Returns:
The created variable.
"""
# Make sure local variables are added to tf.GraphKeys.LOCAL_VARIABLES
collections = list(collections or [])
collections += [ops.GraphKeys.LOCAL_VARIABLES]
return variable_scope.variable(
array_ops.zeros(shape, dtype=dtype),
name=name,
trainable=False,
collections=collections,
validate_shape=validate_shape)
示例7: compute_gradients
# 需要导入模块: from tensorflow.python.ops import variable_scope [as 别名]
# 或者: from tensorflow.python.ops.variable_scope import variable [as 别名]
def compute_gradients(self, *args, **kwargs):
"""Compute gradients of "loss" for the variables in "var_list".
This simply wraps the compute_gradients() from the real optimizer. The
gradients will be aggregated in the apply_gradients() so that user can
modify the gradients like clipping with per replica global norm if needed.
The global norm with aggregated gradients can be bad as one replica's huge
gradients can hurt the gradients from other replicas.
Args:
*args: Arguments for compute_gradients().
**kwargs: Keyword arguments for compute_gradients().
Returns:
A list of (gradient, variable) pairs.
"""
return self._opt.compute_gradients(*args, **kwargs)
示例8: _create_slots
# 需要导入模块: from tensorflow.python.ops import variable_scope [as 别名]
# 或者: from tensorflow.python.ops.variable_scope import variable [as 别名]
def _create_slots(self, var_list):
# Create the beta1 and beta2 accumulators on the same device as the first
# variable.
if (self._beta1_power is None or
self._beta1_power.graph is not var_list[0].graph):
with ops.colocate_with(var_list[0]):
self._beta1_power = variable_scope.variable(self._beta1,
name="beta1_power",
trainable=False)
self._beta2_power = variable_scope.variable(self._beta2,
name="beta2_power",
trainable=False)
# Create slots for the first and second moments.
for v in var_list:
self._zeros_slot(v, "m", self._name)
self._zeros_slot(v, "v", self._name)
示例9: aggregate_metrics
# 需要导入模块: from tensorflow.python.ops import variable_scope [as 别名]
# 或者: from tensorflow.python.ops.variable_scope import variable [as 别名]
def aggregate_metrics(*value_update_tuples):
"""Aggregates the metric value tensors and update ops into two lists.
Args:
*value_update_tuples: a variable number of tuples, each of which contain the
pair of (value_tensor, update_op) from a streaming metric.
Returns:
A list of value `Tensor` objects and a list of update ops.
Raises:
ValueError: if `value_update_tuples` is empty.
"""
if not value_update_tuples:
raise ValueError('Expected at least one value_tensor/update_op pair')
value_ops, update_ops = zip(*value_update_tuples)
return list(value_ops), list(update_ops)
示例10: get_variables
# 需要导入模块: from tensorflow.python.ops import variable_scope [as 别名]
# 或者: from tensorflow.python.ops.variable_scope import variable [as 别名]
def get_variables(scope=None, suffix=None,
collection=ops.GraphKeys.GLOBAL_VARIABLES):
"""Gets the list of variables, filtered by scope and/or suffix.
Args:
scope: an optional scope for filtering the variables to return. Can be a
variable scope or a string.
suffix: an optional suffix for filtering the variables to return.
collection: in which collection search for. Defaults to
`GraphKeys.GLOBAL_VARIABLES`.
Returns:
a list of variables in collection with scope and suffix.
"""
if isinstance(scope, variable_scope.VariableScope):
scope = scope.name
if suffix is not None:
if ':' not in suffix:
suffix += ':'
scope = (scope or '') + '.*' + suffix
return ops.get_collection(collection, scope)
示例11: get_unique_variable
# 需要导入模块: from tensorflow.python.ops import variable_scope [as 别名]
# 或者: from tensorflow.python.ops.variable_scope import variable [as 别名]
def get_unique_variable(var_op_name):
"""Gets the variable uniquely identified by that var_op_name.
Args:
var_op_name: the full name of the variable op, including the scope.
Returns:
a tensorflow variable.
Raises:
ValueError: if no variable uniquely identified by the name exists.
"""
candidates = get_variables(scope=var_op_name)
if not candidates:
raise ValueError('Couldnt find variable %s' % var_op_name)
for candidate in candidates:
if candidate.op.name == var_op_name:
return candidate
raise ValueError('Variable %s does not uniquely identify a variable',
var_op_name)
示例12: assign_from_values_fn
# 需要导入模块: from tensorflow.python.ops import variable_scope [as 别名]
# 或者: from tensorflow.python.ops.variable_scope import variable [as 别名]
def assign_from_values_fn(var_names_to_values):
"""Returns a function that assigns specific variables from the given values.
This function provides a mechanism for performing assignment of variables
to values in a way that does not fill the graph with large assignment values.
Args:
var_names_to_values: A map from variable names to values.
Returns:
A function that takes a single argument, a `tf.Session`, that applies the
assignment operation.
Raises:
ValueError: if any of the given variable names were not found.
"""
assign_op, feed_dict = assign_from_values(var_names_to_values)
def callback(session):
return session.run(assign_op, feed_dict)
return callback
# pylint: disable=protected-access
# Currently variable_scope doesn't provide very good APIs to access
# all variables under scope and retrieve and check existing scopes.
示例13: get_variables
# 需要导入模块: from tensorflow.python.ops import variable_scope [as 别名]
# 或者: from tensorflow.python.ops.variable_scope import variable [as 别名]
def get_variables(scope=None,
suffix=None,
collection=ops.GraphKeys.GLOBAL_VARIABLES):
"""Gets the list of variables, filtered by scope and/or suffix.
Args:
scope: an optional scope for filtering the variables to return. Can be a
variable scope or a string.
suffix: an optional suffix for filtering the variables to return.
collection: in which collection search for. Defaults to
`GraphKeys.GLOBAL_VARIABLES`.
Returns:
a list of variables in collection with scope and suffix.
"""
if scope and isinstance(scope, variable_scope.VariableScope):
scope = scope.name
if suffix is not None:
if ':' not in suffix:
suffix += ':'
scope = (scope or '') + '.*' + suffix
return ops.get_collection(collection, scope)
示例14: get_variable_full_name
# 需要导入模块: from tensorflow.python.ops import variable_scope [as 别名]
# 或者: from tensorflow.python.ops.variable_scope import variable [as 别名]
def get_variable_full_name(var):
"""Returns the full name of a variable.
For normal Variables, this is the same as the var.op.name. For
sliced or PartitionedVariables, this name is the same for all the
slices/partitions. In both cases, this is normally the name used in
a checkpoint file.
Args:
var: A `Variable` object.
Returns:
A string that is the full name.
"""
if var._save_slice_info:
return var._save_slice_info.full_name
else:
return var.op.name
示例15: _create_slots
# 需要导入模块: from tensorflow.python.ops import variable_scope [as 别名]
# 或者: from tensorflow.python.ops.variable_scope import variable [as 别名]
def _create_slots(self, var_list):
first_var = min(var_list, key=lambda x: x.name)
create_new = self._beta1_power is None
if not create_new and context.in_graph_mode():
create_new = (self._beta1_power.graph is not first_var.graph)
if create_new:
with ops.colocate_with(first_var):
self._beta1_power = variable_scope.variable(self._beta1, name="beta1_power", trainable=False)
self._beta2_power = variable_scope.variable(self._beta2, name="beta2_power", trainable=False)
# Create slots for the first and second moments.
for v in var_list :
self._zeros_slot(v, "m", self._name)
self._zeros_slot(v, "v", self._name)
self._zeros_slot(v, "vhat", self._name)