当前位置: 首页>>代码示例>>Python>>正文


Python variable_scope.get_variable_scope方法代码示例

本文整理汇总了Python中tensorflow.python.ops.variable_scope.get_variable_scope方法的典型用法代码示例。如果您正苦于以下问题:Python variable_scope.get_variable_scope方法的具体用法?Python variable_scope.get_variable_scope怎么用?Python variable_scope.get_variable_scope使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow.python.ops.variable_scope的用法示例。


在下文中一共展示了variable_scope.get_variable_scope方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: call

# 需要导入模块: from tensorflow.python.ops import variable_scope [as 别名]
# 或者: from tensorflow.python.ops.variable_scope import get_variable_scope [as 别名]
def call(self, inputs, forward=True):
    vs = variable_scope.get_variable_scope()
    vars_before = vs.global_variables()

    if forward:
      x1, x2 = inputs
      out = self._forward(x1, x2)
    else:
      y1, y2 = inputs
      out = self._backward(y1, y2)

    # Add any created variables to the Layer's variable stores
    new_vars = vs.global_variables()[len(vars_before):]
    train_vars = vs.trainable_variables()
    for new_var in new_vars:
      if new_var in train_vars:
        self._trainable_weights.append(new_var)
      else:
        self._non_trainable_weights.append(new_var)

    return out 
开发者ID:taehoonlee,项目名称:tensornets,代码行数:23,代码来源:rev_block_lib.py

示例2: call

# 需要导入模块: from tensorflow.python.ops import variable_scope [as 别名]
# 或者: from tensorflow.python.ops.variable_scope import get_variable_scope [as 别名]
def call(self, inputs, state):
    """Run the cell on embedded inputs."""
    with ops.device("/cpu:0"):
      if self._initializer:
        initializer = self._initializer
      elif vs.get_variable_scope().initializer:
        initializer = vs.get_variable_scope().initializer
      else:
        # Default initializer for embeddings should have variance=1.
        sqrt3 = math.sqrt(3)  # Uniform(-sqrt(3), sqrt(3)) has variance=1.
        initializer = init_ops.random_uniform_initializer(-sqrt3, sqrt3)

      if isinstance(state, tuple):
        data_type = state[0].dtype
      else:
        data_type = state.dtype

      embedding = vs.get_variable(
          "embedding", [self._embedding_classes, self._embedding_size],
          initializer=initializer,
          dtype=data_type)
      embedded = embedding_ops.embedding_lookup(embedding,
                                                array_ops.reshape(inputs, [-1]))

      return self._cell(embedded, state) 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:27,代码来源:core_rnn_cell.py

示例3: _get_concat_variable

# 需要导入模块: from tensorflow.python.ops import variable_scope [as 别名]
# 或者: from tensorflow.python.ops.variable_scope import get_variable_scope [as 别名]
def _get_concat_variable(name, shape, dtype, num_shards):
  """Get a sharded variable concatenated into one tensor."""
  sharded_variable = _get_sharded_variable(name, shape, dtype, num_shards)
  if len(sharded_variable) == 1:
    return sharded_variable[0]

  concat_name = name + "/concat"
  concat_full_name = vs.get_variable_scope().name + "/" + concat_name + ":0"
  for value in ops.get_collection(ops.GraphKeys.CONCATENATED_VARIABLES):
    if value.name == concat_full_name:
      return value

  concat_variable = array_ops.concat(sharded_variable, 0, name=concat_name)
  ops.add_to_collection(ops.GraphKeys.CONCATENATED_VARIABLES,
                        concat_variable)
  return concat_variable 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:18,代码来源:rnn_cell.py

示例4: testAtrousFullyConvolutionalValues

# 需要导入模块: from tensorflow.python.ops import variable_scope [as 别名]
# 或者: from tensorflow.python.ops.variable_scope import get_variable_scope [as 别名]
def testAtrousFullyConvolutionalValues(self):
    """Verify dense feature extraction with atrous convolution."""
    nominal_stride = 32
    for output_stride in [4, 8, 16, 32, None]:
      with arg_scope(resnet_utils.resnet_arg_scope(is_training=False)):
        with ops.Graph().as_default():
          with self.test_session() as sess:
            random_seed.set_random_seed(0)
            inputs = create_test_input(2, 81, 81, 3)
            # Dense feature extraction followed by subsampling.
            output, _ = self._resnet_small(
                inputs, None, global_pool=False, output_stride=output_stride)
            if output_stride is None:
              factor = 1
            else:
              factor = nominal_stride // output_stride
            output = resnet_utils.subsample(output, factor)
            # Make the two networks use the same weights.
            variable_scope.get_variable_scope().reuse_variables()
            # Feature extraction at the nominal network rate.
            expected, _ = self._resnet_small(inputs, None, global_pool=False)
            sess.run(variables.global_variables_initializer())
            self.assertAllClose(
                output.eval(), expected.eval(), atol=1e-4, rtol=1e-4) 
开发者ID:abhisuri97,项目名称:auto-alt-text-lambda-api,代码行数:26,代码来源:resnet_v2_test.py

示例5: testTrainEvalWithReuse

# 需要导入模块: from tensorflow.python.ops import variable_scope [as 别名]
# 或者: from tensorflow.python.ops.variable_scope import get_variable_scope [as 别名]
def testTrainEvalWithReuse(self):
    train_batch_size = 2
    eval_batch_size = 1
    train_height, train_width = 224, 224
    eval_height, eval_width = 300, 400
    num_classes = 1000
    with self.test_session():
      train_inputs = random_ops.random_uniform(
          (train_batch_size, train_height, train_width, 3))
      logits, _ = alexnet.alexnet_v2(train_inputs)
      self.assertListEqual(logits.get_shape().as_list(),
                           [train_batch_size, num_classes])
      variable_scope.get_variable_scope().reuse_variables()
      eval_inputs = random_ops.random_uniform(
          (eval_batch_size, eval_height, eval_width, 3))
      logits, _ = alexnet.alexnet_v2(
          eval_inputs, is_training=False, spatial_squeeze=False)
      self.assertListEqual(logits.get_shape().as_list(),
                           [eval_batch_size, 4, 7, num_classes])
      logits = math_ops.reduce_mean(logits, [1, 2])
      predictions = math_ops.argmax(logits, 1)
      self.assertEquals(predictions.get_shape().as_list(), [eval_batch_size]) 
开发者ID:abhisuri97,项目名称:auto-alt-text-lambda-api,代码行数:24,代码来源:alexnet_test.py

示例6: testTrainEvalWithReuse

# 需要导入模块: from tensorflow.python.ops import variable_scope [as 别名]
# 或者: from tensorflow.python.ops.variable_scope import get_variable_scope [as 别名]
def testTrainEvalWithReuse(self):
    train_batch_size = 2
    eval_batch_size = 1
    train_height, train_width = 224, 224
    eval_height, eval_width = 256, 256
    num_classes = 1000
    with self.test_session():
      train_inputs = random_ops.random_uniform(
          (train_batch_size, train_height, train_width, 3))
      logits, _ = vgg.vgg_16(train_inputs)
      self.assertListEqual(logits.get_shape().as_list(),
                           [train_batch_size, num_classes])
      variable_scope.get_variable_scope().reuse_variables()
      eval_inputs = random_ops.random_uniform(
          (eval_batch_size, eval_height, eval_width, 3))
      logits, _ = vgg.vgg_16(
          eval_inputs, is_training=False, spatial_squeeze=False)
      self.assertListEqual(logits.get_shape().as_list(),
                           [eval_batch_size, 2, 2, num_classes])
      logits = math_ops.reduce_mean(logits, [1, 2])
      predictions = math_ops.argmax(logits, 1)
      self.assertEquals(predictions.get_shape().as_list(), [eval_batch_size]) 
开发者ID:abhisuri97,项目名称:auto-alt-text-lambda-api,代码行数:24,代码来源:vgg_test.py

示例7: _get_concat_variable

# 需要导入模块: from tensorflow.python.ops import variable_scope [as 别名]
# 或者: from tensorflow.python.ops.variable_scope import get_variable_scope [as 别名]
def _get_concat_variable(name, shape, dtype, num_shards):
  """Get a sharded variable concatenated into one tensor."""
  sharded_variable = _get_sharded_variable(name, shape, dtype, num_shards)
  if len(sharded_variable) == 1:
    return sharded_variable[0]

  concat_name = name + "/concat"
  concat_full_name = vs.get_variable_scope().name + "/" + concat_name + ":0"
  for value in ops.get_collection(ops.GraphKeys.CONCATENATED_VARIABLES):
    if value.name == concat_full_name:
      return value

  concat_variable = array_ops.concat(0, sharded_variable, name=concat_name)
  ops.add_to_collection(ops.GraphKeys.CONCATENATED_VARIABLES,
                        concat_variable)
  return concat_variable 
开发者ID:Guanghan,项目名称:ROLO,代码行数:18,代码来源:rnn_cell.py

示例8: __call__

# 需要导入模块: from tensorflow.python.ops import variable_scope [as 别名]
# 或者: from tensorflow.python.ops.variable_scope import get_variable_scope [as 别名]
def __call__(self, inputs, state, scope=None):
    """Run the cell on embedded inputs."""
    with vs.variable_scope(scope or type(self).__name__):  # "EmbeddingWrapper"
      with ops.device("/cpu:0"):
        if self._initializer:
          initializer = self._initializer
        elif vs.get_variable_scope().initializer:
          initializer = vs.get_variable_scope().initializer
        else:
          # Default initializer for embeddings should have variance=1.
          sqrt3 = math.sqrt(3)  # Uniform(-sqrt(3), sqrt(3)) has variance=1.
          initializer = init_ops.random_uniform_initializer(-sqrt3, sqrt3)

        if type(state) is tuple:
          data_type = state[0].dtype
        else:
          data_type = state.dtype

        embedding = vs.get_variable(
            "embedding", [self._embedding_classes, self._embedding_size],
            initializer=initializer,
            dtype=data_type)
        embedded = embedding_ops.embedding_lookup(
            embedding, array_ops.reshape(inputs, [-1]))
    return self._cell(embedded, state) 
开发者ID:Guanghan,项目名称:ROLO,代码行数:27,代码来源:rnn_cell.py

示例9: testTrainEvalWithReuse

# 需要导入模块: from tensorflow.python.ops import variable_scope [as 别名]
# 或者: from tensorflow.python.ops.variable_scope import get_variable_scope [as 别名]
def testTrainEvalWithReuse(self):
    train_batch_size = 2
    eval_batch_size = 1
    train_height, train_width = 231, 231
    eval_height, eval_width = 281, 281
    num_classes = 1000
    with self.cached_session():
      train_inputs = random_ops.random_uniform(
          (train_batch_size, train_height, train_width, 3))
      logits, _ = overfeat.overfeat(train_inputs)
      self.assertListEqual(logits.get_shape().as_list(),
                           [train_batch_size, num_classes])
      variable_scope.get_variable_scope().reuse_variables()
      eval_inputs = random_ops.random_uniform(
          (eval_batch_size, eval_height, eval_width, 3))
      logits, _ = overfeat.overfeat(
          eval_inputs, is_training=False, spatial_squeeze=False)
      self.assertListEqual(logits.get_shape().as_list(),
                           [eval_batch_size, 2, 2, num_classes])
      logits = math_ops.reduce_mean(logits, [1, 2])
      predictions = math_ops.argmax(logits, 1)
      self.assertEqual(predictions.get_shape().as_list(), [eval_batch_size]) 
开发者ID:google-research,项目名称:tf-slim,代码行数:24,代码来源:overfeat_test.py

示例10: testTrainEvalWithReuse

# 需要导入模块: from tensorflow.python.ops import variable_scope [as 别名]
# 或者: from tensorflow.python.ops.variable_scope import get_variable_scope [as 别名]
def testTrainEvalWithReuse(self):
    train_batch_size = 2
    eval_batch_size = 1
    train_height, train_width = 224, 224
    eval_height, eval_width = 256, 256
    num_classes = 1000
    with self.cached_session():
      train_inputs = random_ops.random_uniform(
          (train_batch_size, train_height, train_width, 3))
      logits, _ = vgg.vgg_a(train_inputs)
      self.assertListEqual(logits.get_shape().as_list(),
                           [train_batch_size, num_classes])
      variable_scope.get_variable_scope().reuse_variables()
      eval_inputs = random_ops.random_uniform(
          (eval_batch_size, eval_height, eval_width, 3))
      logits, _ = vgg.vgg_a(
          eval_inputs, is_training=False, spatial_squeeze=False)
      self.assertListEqual(logits.get_shape().as_list(),
                           [eval_batch_size, 2, 2, num_classes])
      logits = math_ops.reduce_mean(logits, [1, 2])
      predictions = math_ops.argmax(logits, 1)
      self.assertEqual(predictions.get_shape().as_list(), [eval_batch_size]) 
开发者ID:google-research,项目名称:tf-slim,代码行数:24,代码来源:vgg_test.py

示例11: __call__

# 需要导入模块: from tensorflow.python.ops import variable_scope [as 别名]
# 或者: from tensorflow.python.ops.variable_scope import get_variable_scope [as 别名]
def __call__(self, inputs, state, scope=None):
    """Run this RNN cell on inputs, starting from the given state.

    Args:
      inputs: `2-D` tensor with shape `[batch_size x input_size]`.
      state: if `self.state_size` is an integer, this should be a `2-D Tensor`
        with shape `[batch_size x self.state_size]`.  Otherwise, if
        `self.state_size` is a tuple of integers, this should be a tuple
        with shapes `[batch_size x s] for s in self.state_size`.
      scope: VariableScope for the created subgraph; defaults to class name.

    Returns:
      A pair containing:

      - Output: A `2-D` tensor with shape `[batch_size x self.output_size]`.
      - New state: Either a single `2-D` tensor, or a tuple of tensors matching
        the arity and shapes of `state`.
    """
    if scope is not None:
      with vs.variable_scope(scope,
                             custom_getter=self._rnn_get_variable) as scope:
        return super(RNNCell, self).__call__(inputs, state, scope=scope)
    else:
      with vs.variable_scope(vs.get_variable_scope(),
                             custom_getter=self._rnn_get_variable):
        return super(RNNCell, self).__call__(inputs, state) 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:28,代码来源:rnn_cell_impl.py

示例12: _create_slot_var

# 需要导入模块: from tensorflow.python.ops import variable_scope [as 别名]
# 或者: from tensorflow.python.ops.variable_scope import get_variable_scope [as 别名]
def _create_slot_var(primary, val, scope, validate_shape, shape, dtype):
  """Helper function for creating a slot variable."""

  # TODO(lukaszkaiser): Consider allowing partitioners to be set in the current
  # scope.
  current_partitioner = variable_scope.get_variable_scope().partitioner
  variable_scope.get_variable_scope().set_partitioner(None)
  slot = variable_scope.get_variable(
      scope, initializer=val, trainable=False,
      use_resource=_is_resource(primary),
      shape=shape, dtype=dtype,
      validate_shape=validate_shape)
  variable_scope.get_variable_scope().set_partitioner(current_partitioner)

  # pylint: disable=protected-access
  if isinstance(primary, variables.Variable) and primary._save_slice_info:
    # Primary is a partitioned variable, so we need to also indicate that
    # the slot is a partitioned variable.  Slots have the same partitioning
    # as their primaries.
    # For examples when using AdamOptimizer in linear model, slot.name
    # here can be "linear//weights/Adam:0", while primary.op.name is
    # "linear//weight". We want to get 'Adam' as real_slot_name, so we
    # remove "'linear//weight' + '/'" and ':0'.
    real_slot_name = slot.name[len(primary.op.name + "/"):-2]
    slice_info = primary._save_slice_info
    slot._set_save_slice_info(variables.Variable.SaveSliceInfo(
        slice_info.full_name + "/" + real_slot_name,
        slice_info.full_shape[:],
        slice_info.var_offset[:],
        slice_info.var_shape[:]))
  # pylint: enable=protected-access
  return slot 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:34,代码来源:slot_creator.py

示例13: __init__

# 需要导入模块: from tensorflow.python.ops import variable_scope [as 别名]
# 或者: from tensorflow.python.ops.variable_scope import get_variable_scope [as 别名]
def __init__(self, *args, **kwargs):
    super(_FuncGraph, self).__init__(*args, **kwargs)
    self._building_function = True
    self._outer_graph = ops.get_default_graph()
    self._vscope = vs.get_variable_scope()
    self._old_custom_getter = self._vscope.custom_getter
    self._captured = {}
    self.extra_inputs = []
    self.extra_args = []
    self.extra_vars = [] 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:12,代码来源:function.py

示例14: ndlstm_base_unrolled

# 需要导入模块: from tensorflow.python.ops import variable_scope [as 别名]
# 或者: from tensorflow.python.ops.variable_scope import get_variable_scope [as 别名]
def ndlstm_base_unrolled(inputs, noutput, scope=None, reverse=False):
  """Run an LSTM, either forward or backward.

  This is a 1D LSTM implementation using unrolling and the TensorFlow
  LSTM op.

  Args:
    inputs: input sequence (length, batch_size, ninput)
    noutput: depth of output
    scope: optional scope name
    reverse: run LSTM in reverse

  Returns:
    Output sequence (length, batch_size, noutput)

  """
  with variable_scope.variable_scope(scope, "SeqLstmUnrolled", [inputs]):
    length, batch_size, _ = _shape(inputs)
    lstm_cell = rnn_cell.BasicLSTMCell(noutput, state_is_tuple=False)
    state = array_ops.zeros([batch_size, lstm_cell.state_size])
    output_u = []
    inputs_u = array_ops.unstack(inputs)
    if reverse:
      inputs_u = list(reversed(inputs_u))
    for i in xrange(length):
      if i > 0:
        variable_scope.get_variable_scope().reuse_variables()
      output, state = lstm_cell(inputs_u[i], state)
      output_u += [output]
    if reverse:
      output_u = list(reversed(output_u))
    outputs = array_ops.stack(output_u)
    return outputs 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:35,代码来源:lstm1d.py

示例15: sequence_to_final

# 需要导入模块: from tensorflow.python.ops import variable_scope [as 别名]
# 或者: from tensorflow.python.ops.variable_scope import get_variable_scope [as 别名]
def sequence_to_final(inputs, noutput, scope=None, name=None, reverse=False):
  """Run an LSTM across all steps and returns only the final state.

  Args:
    inputs: (length, batch_size, depth) tensor
    noutput: size of output vector
    scope: optional scope name
    name: optional name for output tensor
    reverse: run in reverse

  Returns:
    Batch of size (batch_size, noutput).
  """
  with variable_scope.variable_scope(scope, "SequenceToFinal", [inputs]):
    length, batch_size, _ = _shape(inputs)
    lstm = rnn_cell.BasicLSTMCell(noutput, state_is_tuple=False)
    state = array_ops.zeros([batch_size, lstm.state_size])
    inputs_u = array_ops.unstack(inputs)
    if reverse:
      inputs_u = list(reversed(inputs_u))
    for i in xrange(length):
      if i > 0:
        variable_scope.get_variable_scope().reuse_variables()
      output, state = lstm(inputs_u[i], state)
    outputs = array_ops.reshape(output, [batch_size, noutput], name=name)
    return outputs 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:28,代码来源:lstm1d.py


注:本文中的tensorflow.python.ops.variable_scope.get_variable_scope方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。