本文整理汇总了Python中tensorflow.python.ops.variable_scope.get_variable方法的典型用法代码示例。如果您正苦于以下问题:Python variable_scope.get_variable方法的具体用法?Python variable_scope.get_variable怎么用?Python variable_scope.get_variable使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.python.ops.variable_scope
的用法示例。
在下文中一共展示了variable_scope.get_variable方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _create_dense_column_weighted_sum
# 需要导入模块: from tensorflow.python.ops import variable_scope [as 别名]
# 或者: from tensorflow.python.ops.variable_scope import get_variable [as 别名]
def _create_dense_column_weighted_sum(
column, builder, units, weight_collections, trainable):
"""Create a weighted sum of a dense column for linear_model."""
tensor = column._get_dense_tensor( # pylint: disable=protected-access
builder,
weight_collections=weight_collections,
trainable=trainable)
num_elements = column._variable_shape.num_elements() # pylint: disable=protected-access
batch_size = array_ops.shape(tensor)[0]
tensor = array_ops.reshape(tensor, shape=(batch_size, num_elements))
weight = variable_scope.get_variable(
name='weights',
shape=[num_elements, units],
initializer=init_ops.zeros_initializer(),
trainable=trainable,
collections=weight_collections)
return math_ops.matmul(tensor, weight, name='weighted_sum')
示例2: _get_sparse_tensors
# 需要导入模块: from tensorflow.python.ops import variable_scope [as 别名]
# 或者: from tensorflow.python.ops.variable_scope import get_variable [as 别名]
def _get_sparse_tensors(self,
inputs,
weight_collections=None,
trainable=None):
"""Returns an IdWeightPair.
`IdWeightPair` is a pair of `SparseTensor`s which represents ids and
weights.
`IdWeightPair.id_tensor` is typically a `batch_size` x `num_buckets`
`SparseTensor` of `int64`. `IdWeightPair.weight_tensor` is either a
`SparseTensor` of `float` or `None` to indicate all weights should be
taken to be 1. If specified, `weight_tensor` must have exactly the same
shape and indices as `sp_ids`. Expected `SparseTensor` is same as parsing
output of a `VarLenFeature` which is a ragged matrix.
Args:
inputs: A `LazyBuilder` as a cache to get input tensors required to
create `IdWeightPair`.
weight_collections: List of graph collections to which variables (if any
will be created) are added.
trainable: If `True` also add variables to the graph collection
`GraphKeys.TRAINABLE_VARIABLES` (see ${tf.get_variable}).
"""
pass
示例3: _get_or_create_eval_step
# 需要导入模块: from tensorflow.python.ops import variable_scope [as 别名]
# 或者: from tensorflow.python.ops.variable_scope import get_variable [as 别名]
def _get_or_create_eval_step():
"""Gets or creates the eval step `Tensor`.
Returns:
A `Tensor` representing a counter for the evaluation step.
Raises:
ValueError: If multiple `Tensors` have been added to the
`tf.GraphKeys.EVAL_STEP` collection.
"""
graph = ops.get_default_graph()
eval_steps = graph.get_collection(ops.GraphKeys.EVAL_STEP)
if len(eval_steps) == 1:
return eval_steps[0]
elif len(eval_steps) > 1:
raise ValueError('Multiple tensors added to tf.GraphKeys.EVAL_STEP')
else:
counter = variable_scope.get_variable(
'eval_step',
shape=[],
dtype=dtypes.int64,
initializer=init_ops.zeros_initializer(),
trainable=False,
collections=[ops.GraphKeys.LOCAL_VARIABLES, ops.GraphKeys.EVAL_STEP])
return counter
示例4: create_global_step
# 需要导入模块: from tensorflow.python.ops import variable_scope [as 别名]
# 或者: from tensorflow.python.ops.variable_scope import get_variable [as 别名]
def create_global_step(graph=None):
"""Create global step tensor in graph.
Args:
graph: The graph in which to create the global step tensor. If missing,
use default graph.
Returns:
Global step tensor.
Raises:
ValueError: if global step tensor is already defined.
"""
graph = graph or ops.get_default_graph()
if get_global_step(graph) is not None:
raise ValueError('"global_step" already exists.')
# Create in proper graph and base name_scope.
with graph.as_default() as g, g.name_scope(None):
return variable_scope.get_variable(
ops.GraphKeys.GLOBAL_STEP,
shape=[],
dtype=dtypes.int64,
initializer=init_ops.zeros_initializer(),
trainable=False,
collections=[ops.GraphKeys.GLOBAL_VARIABLES, ops.GraphKeys.GLOBAL_STEP])
示例5: call
# 需要导入模块: from tensorflow.python.ops import variable_scope [as 别名]
# 或者: from tensorflow.python.ops.variable_scope import get_variable [as 别名]
def call(self, inputs, state):
"""Run the cell on embedded inputs."""
with ops.device("/cpu:0"):
if self._initializer:
initializer = self._initializer
elif vs.get_variable_scope().initializer:
initializer = vs.get_variable_scope().initializer
else:
# Default initializer for embeddings should have variance=1.
sqrt3 = math.sqrt(3) # Uniform(-sqrt(3), sqrt(3)) has variance=1.
initializer = init_ops.random_uniform_initializer(-sqrt3, sqrt3)
if isinstance(state, tuple):
data_type = state[0].dtype
else:
data_type = state.dtype
embedding = vs.get_variable(
"embedding", [self._embedding_classes, self._embedding_size],
initializer=initializer,
dtype=data_type)
embedded = embedding_ops.embedding_lookup(embedding,
array_ops.reshape(inputs, [-1]))
return self._cell(embedded, state)
示例6: _attention
# 需要导入模块: from tensorflow.python.ops import variable_scope [as 别名]
# 或者: from tensorflow.python.ops.variable_scope import get_variable [as 别名]
def _attention(self, query, attn_states):
conv2d = nn_ops.conv2d
reduce_sum = math_ops.reduce_sum
softmax = nn_ops.softmax
tanh = math_ops.tanh
with vs.variable_scope("attention"):
k = vs.get_variable(
"attn_w", [1, 1, self._attn_size, self._attn_vec_size])
v = vs.get_variable("attn_v", [self._attn_vec_size])
hidden = array_ops.reshape(attn_states,
[-1, self._attn_length, 1, self._attn_size])
hidden_features = conv2d(hidden, k, [1, 1, 1, 1], "SAME")
y = _linear(query, self._attn_vec_size, True)
y = array_ops.reshape(y, [-1, 1, 1, self._attn_vec_size])
s = reduce_sum(v * tanh(hidden_features + y), [2, 3])
a = softmax(s)
d = reduce_sum(
array_ops.reshape(a, [-1, self._attn_length, 1, 1]) * hidden, [1, 2])
new_attns = array_ops.reshape(d, [-1, self._attn_size])
new_attn_states = array_ops.slice(attn_states, [0, 1, 0], [-1, -1, -1])
return new_attns, new_attn_states
示例7: _highway
# 需要导入模块: from tensorflow.python.ops import variable_scope [as 别名]
# 或者: from tensorflow.python.ops.variable_scope import get_variable [as 别名]
def _highway(self, inp, out):
input_size = inp.get_shape().with_rank(2)[1].value
carry_weight = vs.get_variable("carry_w", [input_size, input_size])
carry_bias = vs.get_variable(
"carry_b", [input_size],
initializer=init_ops.constant_initializer(
self._carry_bias_init))
carry = math_ops.sigmoid(nn_ops.xw_plus_b(inp, carry_weight, carry_bias))
if self._couple_carry_transform_gates:
transform = 1 - carry
else:
transform_weight = vs.get_variable("transform_w",
[input_size, input_size])
transform_bias = vs.get_variable(
"transform_b", [input_size],
initializer=init_ops.constant_initializer(
-self._carry_bias_init))
transform = math_ops.sigmoid(nn_ops.xw_plus_b(inp,
transform_weight,
transform_bias))
return inp * carry + out * transform
示例8: categorical_variable
# 需要导入模块: from tensorflow.python.ops import variable_scope [as 别名]
# 或者: from tensorflow.python.ops.variable_scope import get_variable [as 别名]
def categorical_variable(tensor_in, n_classes, embedding_size, name):
"""Creates an embedding for categorical variable with given number of classes.
Args:
tensor_in: Input tensor with class identifier (can be batch or
N-dimensional).
n_classes: Number of classes.
embedding_size: Size of embedding vector to represent each class.
name: Name of this categorical variable.
Returns:
Tensor of input shape, with additional dimension for embedding.
Example:
Calling categorical_variable([1, 2], 5, 10, "my_cat"), will return 2 x 10
tensor, where each row is representation of the class.
"""
with vs.variable_scope(name):
embeddings = vs.get_variable(name + '_embeddings',
[n_classes, embedding_size])
return embedding_lookup(embeddings, tensor_in)
示例9: Var
# 需要导入模块: from tensorflow.python.ops import variable_scope [as 别名]
# 或者: from tensorflow.python.ops.variable_scope import get_variable [as 别名]
def Var(name, *args, **kw):
"""Implements an operator that generates a variable.
This function is still experimental. Use it only
for generating a single variable instance for
each name.
Args:
name: Name of the variable.
*args: Other arguments to get_variable.
**kw: Other keywords for get_variable.
Returns:
A specs object for generating a variable.
"""
def var(_):
return variable_scope.get_variable(name, *args, **kw)
return specs_lib.Callable(var)
示例10: _get_sharded_variable
# 需要导入模块: from tensorflow.python.ops import variable_scope [as 别名]
# 或者: from tensorflow.python.ops.variable_scope import get_variable [as 别名]
def _get_sharded_variable(name, shape, dtype, num_shards):
"""Get a list of sharded variables with the given dtype."""
if num_shards > shape[0]:
raise ValueError("Too many shards: shape=%s, num_shards=%d" %
(shape, num_shards))
unit_shard_size = int(math.floor(shape[0] / num_shards))
remaining_rows = shape[0] - unit_shard_size * num_shards
shards = []
for i in range(num_shards):
current_size = unit_shard_size
if i < remaining_rows:
current_size += 1
shards.append(vs.get_variable(name + "_%d" % i, [current_size] + shape[1:],
dtype=dtype))
return shards
示例11: __call__
# 需要导入模块: from tensorflow.python.ops import variable_scope [as 别名]
# 或者: from tensorflow.python.ops.variable_scope import get_variable [as 别名]
def __call__(self, inputs, state, scope=None):
"""Run the cell on embedded inputs."""
with vs.variable_scope(scope or "embedding_wrapper"): # "EmbeddingWrapper"
with ops.device("/cpu:0"):
if self._initializer:
initializer = self._initializer
elif vs.get_variable_scope().initializer:
initializer = vs.get_variable_scope().initializer
else:
# Default initializer for embeddings should have variance=1.
sqrt3 = math.sqrt(3) # Uniform(-sqrt(3), sqrt(3)) has variance=1.
initializer = init_ops.random_uniform_initializer(-sqrt3, sqrt3)
if type(state) is tuple:
data_type = state[0].dtype
else:
data_type = state.dtype
embedding = vs.get_variable(
"embedding", [self._embedding_classes, self._embedding_size],
initializer=initializer,
dtype=data_type)
embedded = embedding_ops.embedding_lookup(
embedding, array_ops.reshape(inputs, [-1]))
return self._cell(embedded, state)
示例12: _adaptive_max_norm
# 需要导入模块: from tensorflow.python.ops import variable_scope [as 别名]
# 或者: from tensorflow.python.ops.variable_scope import get_variable [as 别名]
def _adaptive_max_norm(norm, std_factor, decay, global_step, epsilon, name):
"""Find max_norm given norm and previous average."""
with vs.variable_scope(name, "AdaptiveMaxNorm", [norm]):
log_norm = math_ops.log(norm + epsilon)
def moving_average(name, value, decay):
moving_average_variable = vs.get_variable(
name,
shape=value.get_shape(),
dtype=value.dtype,
initializer=init_ops.zeros_initializer(),
trainable=False)
return moving_averages.assign_moving_average(
moving_average_variable, value, decay, zero_debias=False)
# quicker adaptation at the beginning
if global_step is not None:
n = math_ops.cast(global_step, dtypes.float32)
decay = math_ops.minimum(decay, n / (n + 1.))
# update averages
mean = moving_average("mean", log_norm, decay)
sq_mean = moving_average("sq_mean", math_ops.square(log_norm), decay)
variance = sq_mean - math_ops.square(mean)
std = math_ops.sqrt(math_ops.maximum(epsilon, variance))
max_norms = math_ops.exp(mean + std_factor * std)
return max_norms, mean
示例13: _create_categorical_column_weighted_sum
# 需要导入模块: from tensorflow.python.ops import variable_scope [as 别名]
# 或者: from tensorflow.python.ops.variable_scope import get_variable [as 别名]
def _create_categorical_column_weighted_sum(
column, builder, units, sparse_combiner, weight_collections, trainable):
"""Create a weighted sum of a categorical column for linear_model."""
sparse_tensors = column._get_sparse_tensors( # pylint: disable=protected-access
builder,
weight_collections=weight_collections,
trainable=trainable)
id_tensor = sparse_ops.sparse_reshape(sparse_tensors.id_tensor, [
array_ops.shape(sparse_tensors.id_tensor)[0], -1
])
weight_tensor = sparse_tensors.weight_tensor
if weight_tensor is not None:
weight_tensor = sparse_ops.sparse_reshape(
weight_tensor, [array_ops.shape(weight_tensor)[0], -1])
weight = variable_scope.get_variable(
name='weights',
shape=(column._num_buckets, units), # pylint: disable=protected-access
initializer=init_ops.zeros_initializer(),
trainable=trainable,
collections=weight_collections)
return _safe_embedding_lookup_sparse(
weight,
id_tensor,
sparse_weights=weight_tensor,
combiner=sparse_combiner,
name='weighted_sum')
示例14: _get_dense_tensor
# 需要导入模块: from tensorflow.python.ops import variable_scope [as 别名]
# 或者: from tensorflow.python.ops.variable_scope import get_variable [as 别名]
def _get_dense_tensor(self, inputs, weight_collections=None, trainable=None):
# Get sparse IDs and weights.
sparse_tensors = self.categorical_column._get_sparse_tensors( # pylint: disable=protected-access
inputs, weight_collections=weight_collections, trainable=trainable)
sparse_ids = sparse_tensors.id_tensor
sparse_weights = sparse_tensors.weight_tensor
# Create embedding weight, and restore from checkpoint if necessary.
embedding_weights = variable_scope.get_variable(
name='embedding_weights',
shape=(self.categorical_column._num_buckets, self.dimension), # pylint: disable=protected-access
dtype=dtypes.float32,
initializer=self.initializer,
trainable=self.trainable and trainable,
collections=weight_collections)
if self.ckpt_to_load_from is not None:
to_restore = embedding_weights
if isinstance(to_restore, variables.PartitionedVariable):
to_restore = to_restore._get_variable_list() # pylint: disable=protected-access
checkpoint_utils.init_from_checkpoint(self.ckpt_to_load_from, {
self.tensor_name_in_ckpt: to_restore
})
# Return embedding lookup result.
return _safe_embedding_lookup_sparse(
embedding_weights=embedding_weights,
sparse_ids=sparse_ids,
sparse_weights=sparse_weights,
combiner=self.combiner,
name='%s_weights' % self.name,
max_norm=self.max_norm)
示例15: __call__
# 需要导入模块: from tensorflow.python.ops import variable_scope [as 别名]
# 或者: from tensorflow.python.ops.variable_scope import get_variable [as 别名]
def __call__(self, x, states_prev, scope=None):
"""Long short-term memory cell (LSTM)."""
with vs.variable_scope(scope or self._names["scope"]):
x_shape = x.get_shape().with_rank(2)
if not x_shape[1].value:
raise ValueError("Expecting x_shape[1] to be set: %s" % str(x_shape))
if len(states_prev) != 2:
raise ValueError("Expecting states_prev to be a tuple with length 2.")
input_size = x_shape[1].value
w = vs.get_variable(self._names["W"], [input_size + self._num_units,
self._num_units * 4])
b = vs.get_variable(
self._names["b"], [w.get_shape().with_rank(2)[1].value],
initializer=init_ops.constant_initializer(0.0))
if self._use_peephole:
wci = vs.get_variable(self._names["wci"], [self._num_units])
wco = vs.get_variable(self._names["wco"], [self._num_units])
wcf = vs.get_variable(self._names["wcf"], [self._num_units])
else:
wci = wco = wcf = array_ops.zeros([self._num_units])
(cs_prev, h_prev) = states_prev
(_, cs, _, _, _, _, h) = _lstm_block_cell(
x,
cs_prev,
h_prev,
w,
b,
wci=wci,
wco=wco,
wcf=wcf,
forget_bias=self._forget_bias,
use_peephole=self._use_peephole)
new_state = rnn_cell_impl.LSTMStateTuple(cs, h)
return h, new_state