本文整理汇总了Python中tensorflow.python.ops.standard_ops.one_hot方法的典型用法代码示例。如果您正苦于以下问题:Python standard_ops.one_hot方法的具体用法?Python standard_ops.one_hot怎么用?Python standard_ops.one_hot使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.python.ops.standard_ops
的用法示例。
在下文中一共展示了standard_ops.one_hot方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: one_hot_encoding
# 需要导入模块: from tensorflow.python.ops import standard_ops [as 别名]
# 或者: from tensorflow.python.ops.standard_ops import one_hot [as 别名]
def one_hot_encoding(labels,
num_classes,
on_value=1.0,
off_value=0.0,
outputs_collections=None,
scope=None):
"""Transform numeric labels into onehot_labels using `tf.one_hot`.
Args:
labels: [batch_size] target labels.
num_classes: Total number of classes.
on_value: A scalar defining the on-value.
off_value: A scalar defining the off-value.
outputs_collections: Collection to add the outputs.
scope: Optional scope for name_scope.
Returns:
One-hot encoding of the labels.
"""
with ops.name_scope(scope, 'OneHotEncoding', [labels, num_classes]) as sc:
labels = ops.convert_to_tensor(labels)
if labels.dtype == dtypes.int32:
labels = standard_ops.to_int64(labels)
outputs = standard_ops.one_hot(
labels, num_classes, on_value=on_value, off_value=off_value)
return utils.collect_named_outputs(outputs_collections, sc, outputs)
示例2: one_hot_encoding
# 需要导入模块: from tensorflow.python.ops import standard_ops [as 别名]
# 或者: from tensorflow.python.ops.standard_ops import one_hot [as 别名]
def one_hot_encoding(labels,
num_classes,
on_value=1.0,
off_value=0.0,
outputs_collections=None,
scope=None):
"""Transform numeric labels into onehot_labels using `tf.one_hot`.
Args:
labels: [batch_size] target labels.
num_classes: Total number of classes.
on_value: A scalar defining the on-value.
off_value: A scalar defining the off-value.
outputs_collections: Collection to add the outputs.
scope: Optional scope for name_scope.
Returns:
One-hot encoding of the labels.
"""
with ops.name_scope(scope, 'OneHotEncoding', [labels, num_classes]) as sc:
labels = ops.convert_to_tensor(labels)
if labels.dtype == dtypes.int32:
labels = standard_ops.to_int64(labels)
outputs = standard_ops.one_hot(labels,
num_classes,
on_value=on_value,
off_value=off_value)
return utils.collect_named_outputs(outputs_collections, sc, outputs)
示例3: one_hot_encoding
# 需要导入模块: from tensorflow.python.ops import standard_ops [as 别名]
# 或者: from tensorflow.python.ops.standard_ops import one_hot [as 别名]
def one_hot_encoding(labels,
num_classes,
on_value=1.0,
off_value=0.0,
outputs_collections=None,
scope=None):
"""Transform numeric labels into onehot_labels using `tf.one_hot`.
Args:
labels: [batch_size] target labels.
num_classes: total number of classes.
on_value: A scalar defining the on-value.
off_value: A scalar defining the off-value.
outputs_collections: collection to add the outputs.
scope: Optional scope for name_scope.
Returns:
one hot encoding of the labels.
"""
with ops.name_scope(scope, 'OneHotEncoding', [labels, num_classes]) as sc:
labels = ops.convert_to_tensor(labels)
if labels.dtype == dtypes.int32:
labels = standard_ops.to_int64(labels)
outputs = standard_ops.one_hot(labels,
num_classes,
on_value=on_value,
off_value=off_value)
return utils.collect_named_outputs(outputs_collections, sc, outputs)
示例4: max_spanning_tree_gradient
# 需要导入模块: from tensorflow.python.ops import standard_ops [as 别名]
# 或者: from tensorflow.python.ops.standard_ops import one_hot [as 别名]
def max_spanning_tree_gradient(mst_op, d_loss_d_max_scores, *_):
"""Returns a subgradient of the MaximumSpanningTree op.
Note that MaximumSpanningTree is only differentiable w.r.t. its |scores| input
and its |max_scores| output.
Args:
mst_op: The MaximumSpanningTree op being differentiated.
d_loss_d_max_scores: [B] vector where entry b is the gradient of the network
loss w.r.t. entry b of the |max_scores| output of the |mst_op|.
*_: The gradients w.r.t. the other outputs; ignored.
Returns:
1. None, since the op is not differentiable w.r.t. its |num_nodes| input.
2. [B,M,M] tensor where entry b,t,s is a subgradient of the network loss
w.r.t. entry b,t,s of the |scores| input, with the same dtype as
|d_loss_d_max_scores|.
"""
dtype = d_loss_d_max_scores.dtype.base_dtype
if dtype is None:
raise errors.InvalidArgumentError("Expected (%s) is not None" % dtype)
argmax_sources_bxm = mst_op.outputs[1]
input_dim = array_ops.shape(argmax_sources_bxm)[1] # M in the docstring
# The one-hot argmax is a subgradient of max. Convert the batch of maximal
# spanning trees into 0/1 indicators, then scale them by the relevant output
# gradients from |d_loss_d_max_scores|. Note that |d_loss_d_max_scores| must
# be reshaped in order for it to broadcast across the batch dimension.
indicators_bxmxm = standard_ops.one_hot(
argmax_sources_bxm, input_dim, dtype=dtype)
d_loss_d_max_scores_bx1 = array_ops.expand_dims(d_loss_d_max_scores, -1)
d_loss_d_max_scores_bx1x1 = array_ops.expand_dims(d_loss_d_max_scores_bx1, -1)
d_loss_d_scores_bxmxm = indicators_bxmxm * d_loss_d_max_scores_bx1x1
return None, d_loss_d_scores_bxmxm
示例5: one_hot_encoding
# 需要导入模块: from tensorflow.python.ops import standard_ops [as 别名]
# 或者: from tensorflow.python.ops.standard_ops import one_hot [as 别名]
def one_hot_encoding(target, n_classes, on_value=1.0, off_value=0.0,
name="OneHotEncoding"):
""" One Hot Encoding.
Transform numeric labels into a binary vector.
Input:
The Labels Placeholder.
Output:
2-D Tensor, The encoded labels.
Arguments:
target: `Placeholder`. The labels placeholder.
n_classes: `int`. Total number of classes.
on_value: `scalar`. A scalar defining the on-value.
off_value: `scalar`. A scalar defining the off-value.
name: A name for this layer (optional). Default: 'OneHotEncoding'.
"""
with tf.name_scope(name):
if target.dtype != dtypes.int64:
target = standard_ops.to_int64(target)
target = standard_ops.one_hot(target, n_classes,
on_value=on_value,
off_value=off_value)
# Track output tensor.
tf.add_to_collection(tf.GraphKeys.LAYER_TENSOR + '/' + name, target)
return target