当前位置: 首页>>代码示例>>Python>>正文


Python special_math_ops.lbeta方法代码示例

本文整理汇总了Python中tensorflow.python.ops.special_math_ops.lbeta方法的典型用法代码示例。如果您正苦于以下问题:Python special_math_ops.lbeta方法的具体用法?Python special_math_ops.lbeta怎么用?Python special_math_ops.lbeta使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow.python.ops.special_math_ops的用法示例。


在下文中一共展示了special_math_ops.lbeta方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: _log_prob

# 需要导入模块: from tensorflow.python.ops import special_math_ops [as 别名]
# 或者: from tensorflow.python.ops.special_math_ops import lbeta [as 别名]
def _log_prob(self, counts):
    counts = self._maybe_assert_valid_sample(counts)
    ordered_prob = (
        special_math_ops.lbeta(self.concentration + counts)
        - special_math_ops.lbeta(self.concentration))
    return ordered_prob + distribution_util.log_combinations(
        self.total_count, counts) 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:9,代码来源:dirichlet_multinomial.py

示例2: _entropy

# 需要导入模块: from tensorflow.python.ops import special_math_ops [as 别名]
# 或者: from tensorflow.python.ops.special_math_ops import lbeta [as 别名]
def _entropy(self):
    v = array_ops.ones(self.batch_shape_tensor(),
                       dtype=self.dtype)[..., array_ops.newaxis]
    u = v * self.df[..., array_ops.newaxis]
    beta_arg = array_ops.concat([u, v], -1) / 2.
    return (math_ops.log(math_ops.abs(self.scale)) +
            0.5 * math_ops.log(self.df) +
            special_math_ops.lbeta(beta_arg) +
            0.5 * (self.df + 1.) *
            (math_ops.digamma(0.5 * (self.df + 1.)) -
             math_ops.digamma(0.5 * self.df))) 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:13,代码来源:student_t.py

示例3: _log_normalization

# 需要导入模块: from tensorflow.python.ops import special_math_ops [as 别名]
# 或者: from tensorflow.python.ops.special_math_ops import lbeta [as 别名]
def _log_normalization(self):
    return special_math_ops.lbeta(self.concentration) 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:4,代码来源:dirichlet.py

示例4: _log_prob

# 需要导入模块: from tensorflow.python.ops import special_math_ops [as 别名]
# 或者: from tensorflow.python.ops.special_math_ops import lbeta [as 别名]
def _log_prob(self, counts):
    counts = self._assert_valid_counts(counts)
    ordered_prob = (special_math_ops.lbeta(self.alpha + counts) -
                    special_math_ops.lbeta(self.alpha))
    log_prob = ordered_prob + distribution_util.log_combinations(
        self.n, counts)
    return log_prob 
开发者ID:abhisuri97,项目名称:auto-alt-text-lambda-api,代码行数:9,代码来源:dirichlet_multinomial.py

示例5: _entropy

# 需要导入模块: from tensorflow.python.ops import special_math_ops [as 别名]
# 或者: from tensorflow.python.ops.special_math_ops import lbeta [as 别名]
def _entropy(self):
    v = array_ops.ones(self.batch_shape(), dtype=self.dtype)[..., None]
    u = v * self.df[..., None]
    beta_arg = array_ops.concat([u, v], -1) / 2.
    return (math_ops.log(math_ops.abs(self.sigma)) +
            0.5 * math_ops.log(self.df) +
            special_math_ops.lbeta(beta_arg) +
            0.5 * (self.df + 1.) *
            (math_ops.digamma(0.5 * (self.df + 1.)) -
             math_ops.digamma(0.5 * self.df))) 
开发者ID:abhisuri97,项目名称:auto-alt-text-lambda-api,代码行数:12,代码来源:student_t.py

示例6: _log_prob

# 需要导入模块: from tensorflow.python.ops import special_math_ops [as 别名]
# 或者: from tensorflow.python.ops.special_math_ops import lbeta [as 别名]
def _log_prob(self, x):
    x = ops.convert_to_tensor(x, name="x")
    x = self._assert_valid_sample(x)
    unnorm_prob = (self.alpha - 1.) * math_ops.log(x)
    log_prob = math_ops.reduce_sum(
        unnorm_prob, reduction_indices=[-1],
        keep_dims=False) - special_math_ops.lbeta(self.alpha)
    return log_prob 
开发者ID:abhisuri97,项目名称:auto-alt-text-lambda-api,代码行数:10,代码来源:dirichlet.py

示例7: _entropy

# 需要导入模块: from tensorflow.python.ops import special_math_ops [as 别名]
# 或者: from tensorflow.python.ops.special_math_ops import lbeta [as 别名]
def _entropy(self):
    entropy = special_math_ops.lbeta(self.alpha)
    entropy += math_ops.digamma(self.alpha_sum) * (
        self.alpha_sum - math_ops.cast(self.event_shape()[0], self.dtype))
    entropy += -math_ops.reduce_sum(
        (self.alpha - 1.) * math_ops.digamma(self.alpha),
        reduction_indices=[-1],
        keep_dims=False)
    return entropy 
开发者ID:abhisuri97,项目名称:auto-alt-text-lambda-api,代码行数:11,代码来源:dirichlet.py

示例8: _entropy

# 需要导入模块: from tensorflow.python.ops import special_math_ops [as 别名]
# 或者: from tensorflow.python.ops.special_math_ops import lbeta [as 别名]
def _entropy(self):
    u = array_ops.expand_dims(self.df * self._ones(), -1)
    v = array_ops.expand_dims(self._ones(), -1)
    beta_arg = array_ops.concat(len(u.get_shape()) - 1, [u, v]) / 2
    half_df = 0.5 * self.df
    return ((0.5 + half_df) * (math_ops.digamma(0.5 + half_df) -
                               math_ops.digamma(half_df)) +
            0.5 * math_ops.log(self.df) +
            special_math_ops.lbeta(beta_arg) +
            math_ops.log(self.sigma)) 
开发者ID:tobegit3hub,项目名称:deep_image_model,代码行数:12,代码来源:student_t.py


注:本文中的tensorflow.python.ops.special_math_ops.lbeta方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。