当前位置: 首页>>代码示例>>Python>>正文


Python rnn_cell.MultiRNNCell方法代码示例

本文整理汇总了Python中tensorflow.python.ops.rnn_cell.MultiRNNCell方法的典型用法代码示例。如果您正苦于以下问题:Python rnn_cell.MultiRNNCell方法的具体用法?Python rnn_cell.MultiRNNCell怎么用?Python rnn_cell.MultiRNNCell使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow.python.ops.rnn_cell的用法示例。


在下文中一共展示了rnn_cell.MultiRNNCell方法的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: _get_rnn_cell

# 需要导入模块: from tensorflow.python.ops import rnn_cell [as 别名]
# 或者: from tensorflow.python.ops.rnn_cell import MultiRNNCell [as 别名]
def _get_rnn_cell(cell_type, num_units, num_layers):
  """Constructs and return an `RNNCell`.

  Args:
    cell_type: either a string identifying the `RNNCell` type, or a subclass of
      `RNNCell`.
    num_units: the number of units in the `RNNCell`.
    num_layers: the number of layers in the RNN.
  Returns:
    An initialized `RNNCell`.
  Raises:
    ValueError: `cell_type` is an invalid `RNNCell` name.
    TypeError: `cell_type` is not a string or a subclass of `RNNCell`.
  """
  if isinstance(cell_type, str):
    cell_type = _CELL_TYPES.get(cell_type)
    if cell_type is None:
      raise ValueError('The supported cell types are {}; got {}'.format(
          list(_CELL_TYPES.keys()), cell_type))
  if not issubclass(cell_type, rnn_cell.RNNCell):
    raise TypeError(
        'cell_type must be a subclass of RNNCell or one of {}.'.format(
            list(_CELL_TYPES.keys())))
  cell = cell_type(num_units=num_units)
  if num_layers > 1:
    cell = rnn_cell.MultiRNNCell(
        [cell] * num_layers, state_is_tuple=True)
  return cell 
开发者ID:tobegit3hub,项目名称:deep_image_model,代码行数:30,代码来源:dynamic_rnn_estimator.py

示例2: save_variables_list

# 需要导入模块: from tensorflow.python.ops import rnn_cell [as 别名]
# 或者: from tensorflow.python.ops.rnn_cell import MultiRNNCell [as 别名]
def save_variables_list(self):
        # Return a list of the trainable variables created within the rnnlm model.
        # This consists of the two projection softmax variables (softmax_w and softmax_b),
        # embedding, and all of the weights and biases in the MultiRNNCell model.
        # Save only the trainable variables and the placeholders needed to resume training;
        # discard the rest, including optimizer state.
        save_vars = set(tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='rnnlm'))
        save_vars.update({self.lr, self.global_epoch_fraction, self.global_seconds_elapsed})
        return list(save_vars) 
开发者ID:pender,项目名称:chatbot-rnn,代码行数:11,代码来源:model.py

示例3: _build_pre

# 需要导入模块: from tensorflow.python.ops import rnn_cell [as 别名]
# 或者: from tensorflow.python.ops.rnn_cell import MultiRNNCell [as 别名]
def _build_pre(self):
        self.dimA = 20
        self.cellA = MultiRNNCell([LSTMCell(self.dimA)] * 2)
        self.b1 = 0.95
        self.b2 = 0.95
        self.lr = 0.1
        self.eps = 1e-8 
开发者ID:vfleaking,项目名称:rnnprop,代码行数:9,代码来源:rnn.py

示例4: _build_pre

# 需要导入模块: from tensorflow.python.ops import rnn_cell [as 别名]
# 或者: from tensorflow.python.ops.rnn_cell import MultiRNNCell [as 别名]
def _build_pre(self):
        self.dimH = 20
        self.cellH = MultiRNNCell([LSTMCell(self.dimH)] * 2)
        self.lr = 0.1 
开发者ID:vfleaking,项目名称:rnnprop,代码行数:6,代码来源:deepmind.py

示例5: _create_encoder_cell

# 需要导入模块: from tensorflow.python.ops import rnn_cell [as 别名]
# 或者: from tensorflow.python.ops.rnn_cell import MultiRNNCell [as 别名]
def _create_encoder_cell(self):
        return MultiRNNCell([self._create_rnn_cell() for _ in range(self.cfg.num_layers)]) 
开发者ID:IsaacChanghau,项目名称:AmusingPythonCodes,代码行数:4,代码来源:seq2seq_model.py

示例6: _create_decoder_cell

# 需要导入模块: from tensorflow.python.ops import rnn_cell [as 别名]
# 或者: from tensorflow.python.ops.rnn_cell import MultiRNNCell [as 别名]
def _create_decoder_cell(self):
        enc_outputs, enc_states, enc_seq_len = self.enc_outputs, self.enc_states, self.enc_seq_len
        batch_size = self.batch_size * self.cfg.beam_size if self.use_beam_search else self.batch_size
        with tf.variable_scope("attention"):
            if self.cfg.attention == "luong":  # Luong attention mechanism
                attention_mechanism = LuongAttention(num_units=self.cfg.num_units, memory=enc_outputs,
                                                     memory_sequence_length=enc_seq_len)
            else:  # default using Bahdanau attention mechanism
                attention_mechanism = BahdanauAttention(num_units=self.cfg.num_units, memory=enc_outputs,
                                                        memory_sequence_length=enc_seq_len)

        def cell_input_fn(inputs, attention):  # define cell input function to keep input/output dimension same
            # reference: https://www.tensorflow.org/api_docs/python/tf/contrib/seq2seq/AttentionWrapper
            if not self.cfg.use_attention_input_feeding:
                return inputs
            input_project = tf.layers.Dense(self.cfg.num_units, dtype=tf.float32, name='attn_input_feeding')
            return input_project(tf.concat([inputs, attention], axis=-1))

        if self.cfg.top_attention:  # apply attention mechanism only on the top decoder layer
            cells = [self._create_rnn_cell() for _ in range(self.cfg.num_layers)]
            cells[-1] = AttentionWrapper(cells[-1], attention_mechanism=attention_mechanism, name="Attention_Wrapper",
                                         attention_layer_size=self.cfg.num_units, initial_cell_state=enc_states[-1],
                                         cell_input_fn=cell_input_fn)
            initial_state = [state for state in enc_states]
            initial_state[-1] = cells[-1].zero_state(batch_size=batch_size, dtype=tf.float32)
            dec_init_states = tuple(initial_state)
            cells = MultiRNNCell(cells)
        else:
            cells = MultiRNNCell([self._create_rnn_cell() for _ in range(self.cfg.num_layers)])
            cells = AttentionWrapper(cells, attention_mechanism=attention_mechanism, name="Attention_Wrapper",
                                     attention_layer_size=self.cfg.num_units, initial_cell_state=enc_states,
                                     cell_input_fn=cell_input_fn)
            dec_init_states = cells.zero_state(batch_size=batch_size, dtype=tf.float32).clone(cell_state=enc_states)
        return cells, dec_init_states 
开发者ID:IsaacChanghau,项目名称:AmusingPythonCodes,代码行数:36,代码来源:seq2seq_model.py

示例7: _create_rnn_cell

# 需要导入模块: from tensorflow.python.ops import rnn_cell [as 别名]
# 或者: from tensorflow.python.ops.rnn_cell import MultiRNNCell [as 别名]
def _create_rnn_cell(self):
        if self.cfg["num_layers"] is None or self.cfg["num_layers"] <= 1:
            return self._create_single_rnn_cell(self.cfg["num_units"])
        else:
            if self.cfg["use_stack_rnn"]:
                return [self._create_single_rnn_cell(self.cfg["num_units"]) for _ in range(self.cfg["num_layers"])]
            else:
                return MultiRNNCell([self._create_single_rnn_cell(self.cfg["num_units"])
                                     for _ in range(self.cfg["num_layers"])]) 
开发者ID:IsaacChanghau,项目名称:neural_sequence_labeling,代码行数:11,代码来源:blstm_cnn_crf_model.py

示例8: build_cell

# 需要导入模块: from tensorflow.python.ops import rnn_cell [as 别名]
# 或者: from tensorflow.python.ops.rnn_cell import MultiRNNCell [as 别名]
def build_cell(hidden_units, depth=1):
  cell_list = [build_single_cell(hidden_units) for i in range(depth)]
  return MultiRNNCell(cell_list) 
开发者ID:jinze1994,项目名称:ATRank,代码行数:5,代码来源:model.py

示例9: build_cell

# 需要导入模块: from tensorflow.python.ops import rnn_cell [as 别名]
# 或者: from tensorflow.python.ops.rnn_cell import MultiRNNCell [as 别名]
def build_cell(hidden_units, depth=1):
    cell_list = [build_single_cell(hidden_units) for i in range(depth)]
    return MultiRNNCell(cell_list)
    user_count, item_count, cate_count = pickle.load(f) 
开发者ID:jinze1994,项目名称:ATRank,代码行数:6,代码来源:model.py


注:本文中的tensorflow.python.ops.rnn_cell.MultiRNNCell方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。