本文整理汇总了Python中tensorflow.python.ops.rnn.rnn方法的典型用法代码示例。如果您正苦于以下问题:Python rnn.rnn方法的具体用法?Python rnn.rnn怎么用?Python rnn.rnn使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.python.ops.rnn
的用法示例。
在下文中一共展示了rnn.rnn方法的14个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: baseline_forward
# 需要导入模块: from tensorflow.python.ops import rnn [as 别名]
# 或者: from tensorflow.python.ops.rnn import rnn [as 别名]
def baseline_forward(self, X, size, n_class):
shape = X.get_shape()
# batch_size x sentence_length x word_length -> batch_size x sentence_length x word_length
_X = tf.transpose(X, [1, 0, 2])
_X = tf.reshape(_X, [-1, int(shape[2])]) # (batch_size x sentence_length) x word_length
seq = tf.split(0, int(shape[1]), _X) # sentence_length x (batch_size x word_length)
with tf.name_scope("LSTM"):
lstm_cell = rnn_cell.BasicLSTMCell(size, forget_bias=1.0)
outputs, states = rnn.rnn(lstm_cell, seq, dtype=tf.float32)
with tf.name_scope("LSTM-Classifier"):
W = tf.Variable(tf.random_normal([size, n_class]), name="W")
b = tf.Variable(tf.random_normal([n_class]), name="b")
output = tf.matmul(outputs[-1], W) + b
return output
示例2: basic_rnn_seq2seq
# 需要导入模块: from tensorflow.python.ops import rnn [as 别名]
# 或者: from tensorflow.python.ops.rnn import rnn [as 别名]
def basic_rnn_seq2seq(
encoder_inputs, decoder_inputs, cell, dtype=dtypes.float32, scope=None):
"""Basic RNN sequence-to-sequence model.
This model first runs an RNN to encode encoder_inputs into a state vector,
then runs decoder, initialized with the last encoder state, on decoder_inputs.
Encoder and decoder use the same RNN cell type, but don't share parameters.
Args:
encoder_inputs: A list of 2D Tensors [batch_size x input_size].
decoder_inputs: A list of 2D Tensors [batch_size x input_size].
cell: rnn_cell.RNNCell defining the cell function and size.
dtype: The dtype of the initial state of the RNN cell (default: tf.float32).
scope: VariableScope for the created subgraph; default: "basic_rnn_seq2seq".
Returns:
A tuple of the form (outputs, state), where:
outputs: A list of the same length as decoder_inputs of 2D Tensors with
shape [batch_size x output_size] containing the generated outputs.
state: The state of each decoder cell in the final time-step.
It is a 2D Tensor of shape [batch_size x cell.state_size].
"""
with variable_scope.variable_scope(scope or "basic_rnn_seq2seq"):
_, enc_state = rnn.rnn(cell, encoder_inputs, dtype=dtype)
return rnn_decoder(decoder_inputs, enc_state, cell)
示例3: basic_rnn_seq2seq
# 需要导入模块: from tensorflow.python.ops import rnn [as 别名]
# 或者: from tensorflow.python.ops.rnn import rnn [as 别名]
def basic_rnn_seq2seq(
encoder_inputs, decoder_inputs, cell, dtype=dtypes.float32, scope=None):
"""Basic RNN sequence-to-sequence model.
This model first runs an RNN to encode encoder_inputs into a state vector,
then runs decoder, initialized with the last encoder state, on decoder_inputs.
Encoder and decoder use the same RNN cell type, but don't share parameters.
Args:
encoder_inputs: A list of 2D Tensors [batch_size x input_size].
decoder_inputs: A list of 2D Tensors [batch_size x input_size].
cell: rnn_cell.RNNCell defining the cell function and size.
dtype: The dtype of the initial state of the RNN cell (default: tf.float32).
scope: VariableScope for the created subgraph; default: "basic_rnn_seq2seq".
Returns:
A tuple of the form (outputs, state), where:
outputs: A list of the same length as decoder_inputs of 2D Tensors with
shape [batch_size x output_size] containing the generated outputs.
state: The state of each decoder cell in the final time-step.
It is a 2D Tensor of shape [batch_size x cell.state_size].
"""
with variable_scope.variable_scope(scope or "basic_rnn_seq2seq"):
_, enc_state = rnn.rnn(cell, encoder_inputs, dtype=dtype)
return rnn_decoder(decoder_inputs, enc_state, cell)
示例4: basic_rnn_seq2seq
# 需要导入模块: from tensorflow.python.ops import rnn [as 别名]
# 或者: from tensorflow.python.ops.rnn import rnn [as 别名]
def basic_rnn_seq2seq(
encoder_inputs, decoder_inputs, cell, dtype=dtypes.float32, scope=None):
"""Basic RNN sequence-to-sequence model.
This model first runs an RNN to encode encoder_inputs into a state vector,
then runs decoder, initialized with the last encoder state, on decoder_inputs.
Encoder and decoder use the same RNN cell type, but don't share parameters.
Args:
encoder_inputs: A list of 2D Tensors [batch_size x input_size].
decoder_inputs: A list of 2D Tensors [batch_size x input_size].
cell: rnn_cell.RNNCell defining the cell function and size.
dtype: The dtype of the initial state of the RNN cell (default: tf.float32).
scope: VariableScope for the created subgraph; default: "basic_rnn_seq2seq".
Returns:
A tuple of the form (outputs, state), where:
outputs: A list of the same length as decoder_inputs of 2D Tensors with
shape [batch_size x output_size] containing the generated outputs.
state: The state of each decoder cell in the final time-step.
It is a 2D Tensor of shape [batch_size x cell.state_size].
"""
with variable_scope.variable_scope(scope or "basic_rnn_seq2seq"):
_, enc_state = rnn.rnn(cell, encoder_inputs, dtype=dtype)
return rnn_decoder(decoder_inputs, enc_state, cell)
示例5: tied_rnn_seq2seq
# 需要导入模块: from tensorflow.python.ops import rnn [as 别名]
# 或者: from tensorflow.python.ops.rnn import rnn [as 别名]
def tied_rnn_seq2seq(encoder_inputs, decoder_inputs, cell,
loop_function=None, dtype=dtypes.float32, scope=None):
"""RNN sequence-to-sequence model with tied encoder and decoder parameters.
This model first runs an RNN to encode encoder_inputs into a state vector, and
then runs decoder, initialized with the last encoder state, on decoder_inputs.
Encoder and decoder use the same RNN cell and share parameters.
Args:
encoder_inputs: A list of 2D Tensors [batch_size x input_size].
decoder_inputs: A list of 2D Tensors [batch_size x input_size].
cell: rnn_cell.RNNCell defining the cell function and size.
loop_function: If not None, this function will be applied to i-th output
in order to generate i+1-th input, and decoder_inputs will be ignored,
except for the first element ("GO" symbol), see rnn_decoder for details.
dtype: The dtype of the initial state of the rnn cell (default: tf.float32).
scope: VariableScope for the created subgraph; default: "tied_rnn_seq2seq".
Returns:
A tuple of the form (outputs, state), where:
outputs: A list of the same length as decoder_inputs of 2D Tensors with
shape [batch_size x output_size] containing the generated outputs.
state: The state of each decoder cell in each time-step. This is a list
with length len(decoder_inputs) -- one item for each time-step.
It is a 2D Tensor of shape [batch_size x cell.state_size].
"""
with variable_scope.variable_scope("combined_tied_rnn_seq2seq"):
scope = scope or "tied_rnn_seq2seq"
_, enc_state = rnn.rnn(
cell, encoder_inputs, dtype=dtype, scope=scope)
variable_scope.get_variable_scope().reuse_variables()
return rnn_decoder(decoder_inputs, enc_state, cell,
loop_function=loop_function, scope=scope)
示例6: tied_rnn_seq2seq
# 需要导入模块: from tensorflow.python.ops import rnn [as 别名]
# 或者: from tensorflow.python.ops.rnn import rnn [as 别名]
def tied_rnn_seq2seq(encoder_inputs, decoder_inputs, cell,
loop_function=None, dtype=dtypes.float32, scope=None):
"""RNN sequence-to-sequence model with tied encoder and decoder parameters.
This model first runs an RNN to encode encoder_inputs into a state vector, and
then runs decoder, initialized with the last encoder state, on decoder_inputs.
Encoder and decoder use the same RNN cell and share parameters.
Args:
encoder_inputs: A list of 2D Tensors [batch_size x input_size].
decoder_inputs: A list of 2D Tensors [batch_size x input_size].
cell: rnn_cell.RNNCell defining the cell function and size.
loop_function: If not None, this function will be applied to i-th output
in order to generate i+1-th input, and decoder_inputs will be ignored,
except for the first element ("GO" symbol), see rnn_decoder for details.
dtype: The dtype of the initial state of the rnn cell (default: tf.float32).
scope: VariableScope for the created subgraph; default: "tied_rnn_seq2seq".
Returns:
A tuple of the form (outputs, state), where:
outputs: A list of the same length as decoder_inputs of 2D Tensors with
shape [batch_size x output_size] containing the generated outputs.
state: The state of each decoder cell in each time-step. This is a list
with length len(decoder_inputs) -- one item for each time-step.
It is a 2D Tensor of shape [batch_size x cell.state_size].
"""
with variable_scope.variable_scope("combined_tied_rnn_seq2seq"):
scope = scope or "tied_rnn_seq2seq"
_, enc_state = rnn.rnn(
cell, encoder_inputs, dtype=dtype, scope=scope)
variable_scope.get_variable_scope().reuse_variables()
return rnn_decoder(decoder_inputs, enc_state, cell,
loop_function=loop_function, scope=scope)
示例7: __call__
# 需要导入模块: from tensorflow.python.ops import rnn [as 别名]
# 或者: from tensorflow.python.ops.rnn import rnn [as 别名]
def __call__(self,
inputs,
initial_state=None,
dtype=None,
sequence_length=None,
scope=None):
is_list = isinstance(inputs, list)
if self._use_dynamic_rnn:
if is_list:
inputs = array_ops.pack(inputs)
outputs, state = rnn.dynamic_rnn(
self._cell,
inputs,
sequence_length=sequence_length,
initial_state=initial_state,
dtype=dtype,
time_major=True,
scope=scope)
if is_list:
# Convert outputs back to list
outputs = array_ops.unpack(outputs)
else: # non-dynamic rnn
if not is_list:
inputs = array_ops.unpack(inputs)
outputs, state = rnn.rnn(self._cell,
inputs,
initial_state=initial_state,
dtype=dtype,
sequence_length=sequence_length,
scope=scope)
if not is_list:
# Convert outputs back to tensor
outputs = array_ops.pack(outputs)
return outputs, state
示例8: tied_rnn_seq2seq
# 需要导入模块: from tensorflow.python.ops import rnn [as 别名]
# 或者: from tensorflow.python.ops.rnn import rnn [as 别名]
def tied_rnn_seq2seq(encoder_inputs, decoder_inputs, cell,
loop_function=None, dtype=dtypes.float32, scope=None):
"""RNN sequence-to-sequence model with tied encoder and decoder parameters.
This model first runs an RNN to encode encoder_inputs into a state vector, and
then runs decoder, initialized with the last encoder state, on decoder_inputs.
Encoder and decoder use the same RNN cell and share parameters.
Args:
encoder_inputs: A list of 2D Tensors [batch_size x input_size].
decoder_inputs: A list of 2D Tensors [batch_size x input_size].
cell: rnn_cell.RNNCell defining the cell function and size.
loop_function: If not None, this function will be applied to i-th output
in order to generate i+1-th input, and decoder_inputs will be ignored,
except for the first element ("GO" symbol), see rnn_decoder for details.
dtype: The dtype of the initial state of the rnn cell (default: tf.float32).
scope: VariableScope for the created subgraph; default: "tied_rnn_seq2seq".
Returns:
A tuple of the form (outputs, state), where:
outputs: A list of the same length as decoder_inputs of 2D Tensors with
shape [batch_size x output_size] containing the generated outputs.
state: The state of each decoder cell in each time-step. This is a list
with length len(decoder_inputs) -- one item for each time-step.
It is a 2D Tensor of shape [batch_size x cell.state_size].
"""
with variable_scope.variable_scope("combined_tied_rnn_seq2seq"):
scope = scope or "tied_rnn_seq2seq"
_, enc_state = rnn.rnn(
cell, encoder_inputs, dtype=dtype, scope=scope)
variable_scope.get_variable_scope().reuse_variables()
return rnn_decoder(decoder_inputs, enc_state, cell,
loop_function=loop_function, scope=scope)
示例9: rnn_model
# 需要导入模块: from tensorflow.python.ops import rnn [as 别名]
# 或者: from tensorflow.python.ops.rnn import rnn [as 别名]
def rnn_model(x, weights, biases):
"""Build a rnn model for image"""
x = tf.transpose(x, [1, 0, 2])
x = tf.reshape(x, [-1, n_input])
x = tf.split(0, n_steps, x)
lstm_cell = rnn_cell.BasicLSTMCell(n_hidden, forget_bias=1.0)
outputs, states = rnn.rnn(lstm_cell, x, dtype=tf.float32)
return tf.matmul(outputs[-1], weights) + biases
示例10: predict
# 需要导入模块: from tensorflow.python.ops import rnn [as 别名]
# 或者: from tensorflow.python.ops.rnn import rnn [as 别名]
def predict():
"""Predict unseen images"""
"""Step 0: load data and trained model"""
mnist = input_data.read_data_sets("./data/", one_hot=True)
checkpoint_dir = sys.argv[1]
"""Step 1: build the rnn model"""
x = tf.placeholder("float", [None, n_steps, n_input])
y = tf.placeholder("float", [None, n_classes])
weights = tf.Variable(tf.random_normal([n_hidden, n_classes]), name='weights')
biases = tf.Variable(tf.random_normal([n_classes]), name='biases')
pred = rnn_model(x, weights, biases)
correct_pred = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
"""Step 2: predict new images with the trained model"""
with tf.Session() as sess:
sess.run(tf.initialize_all_variables())
"""Step 2.0: load the trained model"""
checkpoint_file = tf.train.latest_checkpoint(checkpoint_dir + 'checkpoints')
print('Loaded the trained model: {}'.format(checkpoint_file))
saver = tf.train.Saver()
saver.restore(sess, checkpoint_file)
"""Step 2.1: predict new data"""
test_len = 500
test_data = mnist.test.images[:test_len].reshape((-1, n_steps, n_input))
test_label = mnist.test.labels[:test_len]
print("Testing Accuracy:", sess.run(accuracy, feed_dict={x: test_data, y: test_label}))
示例11: rnn_model
# 需要导入模块: from tensorflow.python.ops import rnn [as 别名]
# 或者: from tensorflow.python.ops.rnn import rnn [as 别名]
def rnn_model(x, weights, biases):
"""RNN (LSTM or GRU) model for image"""
x = tf.transpose(x, [1, 0, 2])
x = tf.reshape(x, [-1, n_input])
x = tf.split(0, n_steps, x)
lstm_cell = rnn_cell.BasicLSTMCell(n_hidden, forget_bias=1.0)
outputs, states = rnn.rnn(lstm_cell, x, dtype=tf.float32)
return tf.matmul(outputs[-1], weights) + biases
示例12: train
# 需要导入模块: from tensorflow.python.ops import rnn [as 别名]
# 或者: from tensorflow.python.ops.rnn import rnn [as 别名]
def train():
"""Train an image classifier"""
"""Step 0: load image data and training parameters"""
mnist = input_data.read_data_sets("./data/", one_hot=True)
parameter_file = sys.argv[1]
params = json.loads(open(parameter_file).read())
"""Step 1: build a rnn model for image"""
x = tf.placeholder("float", [None, n_steps, n_input])
y = tf.placeholder("float", [None, n_classes])
weights = tf.Variable(tf.random_normal([n_hidden, n_classes]), name='weights')
biases = tf.Variable(tf.random_normal([n_classes]), name='biases')
pred = rnn_model(x, weights, biases)
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y))
optimizer = tf.train.AdamOptimizer(learning_rate=params['learning_rate']).minimize(cost)
correct_pred = tf.equal(tf.argmax(pred,1), tf.argmax(y,1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
"""Step 2: train the image classification model"""
with tf.Session() as sess:
sess.run(tf.initialize_all_variables())
step = 1
"""Step 2.0: create a directory for saving model files"""
timestamp = str(int(time.time()))
out_dir = os.path.abspath(os.path.join(os.path.curdir, "trained_model_" + timestamp))
checkpoint_dir = os.path.abspath(os.path.join(out_dir, "checkpoints"))
checkpoint_prefix = os.path.join(checkpoint_dir, "model")
if not os.path.exists(checkpoint_dir):
os.makedirs(checkpoint_dir)
saver = tf.train.Saver(tf.all_variables())
"""Step 2.1: train the image classifier batch by batch"""
while step * params['batch_size'] < params['training_iters']:
batch_x, batch_y = mnist.train.next_batch(params['batch_size'])
# Reshape data to get 28 seq of 28 elements
batch_x = batch_x.reshape((params['batch_size'], n_steps, n_input))
sess.run(optimizer, feed_dict={x: batch_x, y: batch_y})
"""Step 2.2: save the model"""
if step % params['display_step'] == 0:
path = saver.save(sess, checkpoint_prefix, global_step=step)
acc = sess.run(accuracy, feed_dict={x: batch_x, y: batch_y})
loss = sess.run(cost, feed_dict={x: batch_x, y: batch_y})
print('Iter: {}, Loss: {:.6f}, Accuracy: {:.6f}'.format(step * params['batch_size'], loss, acc))
step += 1
print("The training is done")
"""Step 3: test the model"""
test_len = 128
test_data = mnist.test.images[:test_len].reshape((-1, n_steps, n_input))
test_label = mnist.test.labels[:test_len]
print("Testing Accuracy:", sess.run(accuracy, feed_dict={x: test_data, y: test_label}))
示例13: Forward
# 需要导入模块: from tensorflow.python.ops import rnn [as 别名]
# 或者: from tensorflow.python.ops.rnn import rnn [as 别名]
def Forward(self, sess):
lstm= tf.nn.rnn_cell.BasicLSTMCell(200, forget_bias=1.0)#LSTM size
#lstm=tf.nn.rnn_cell.GRUCell(10)
state=tf.zeros([1,200])# batch size, state_num=2*step_size
num_steps=20# we don't need time step actually, the length of sentence is time-step
x_in_batch = tf.transpose(self.x_in, [1, 0, 2])#change to 20*1*200
x_in = tf.reshape(x_in_batch, [-1, 200])#change to 20*200
x_in = tf.split(0, 20, x_in)#this will return a list, i.e. 20 sequences of 1*200
if self.i == 0:
with tf.variable_scope('output'):
output_lstm, state=rnn.rnn(lstm, x_in, dtype=tf.float32)
#output_lstm, state= lstm(x_in,state)#200*1
else:
with tf.variable_scope('output', reuse=True):
output_lstm, state = rnn.rnn(lstm, x_in, dtype=tf.float32)
#output_lstm, state= lstm(x_in,state)
self.i+=1
output_lstm=output_lstm[-1]# get the last element of a list
lin_h=tf.matmul(output_lstm,self.hiddenLayer.W)+self.hiddenLayer.b
#x_in=1*200, W=200*200
reg_h = tf.reduce_sum(tf.gather(self.reg_lookup_table, self.reg_x), 0)#Num*200
print "reg_h is"
print reg_h
h = self.activation(lin_h + tf.cast(reg_h,tf.float32))#1*200
lin_output_pre = tf.matmul(h, self.outputLayer.W) + self.outputLayer.b
lin_output = tf.nn.dropout(lin_output_pre, keep_prob=0.6)
#h=1*200, outputLayer.W=200*63, lin_outupt=1*63
#re.W:19156*63
reg_output = tf.reduce_sum(tf.gather(self.skip_layer_re.W, self.reg_x), 0) + self.skip_layer_re.b
print reg_output
#x_in=1*200. ae.W=200*63
ae_output = tf.matmul(x_in[-1], self.skip_layer_ae.W) + self.skip_layer_ae.b#use the last element as skip layer input
ae_output = tf.nn.dropout(ae_output, keep_prob=0.5)
output = tf.nn.softmax(lin_output + ae_output + reg_output)#XXX*63
return output
示例14: embedding_rnn_seq2seq
# 需要导入模块: from tensorflow.python.ops import rnn [as 别名]
# 或者: from tensorflow.python.ops.rnn import rnn [as 别名]
def embedding_rnn_seq2seq(encoder_inputs, decoder_inputs, cell,
num_encoder_symbols, num_decoder_symbols,
embedding_size, output_projection=None,
feed_previous=False, dtype=dtypes.float32,
scope=None, beam_search=True, beam_size=10):
"""Embedding RNN sequence-to-sequence model.
This model first embeds encoder_inputs by a newly created embedding (of shape
[num_encoder_symbols x input_size]). Then it runs an RNN to encode
embedded encoder_inputs into a state vector. Next, it embeds decoder_inputs
by another newly created embedding (of shape [num_decoder_symbols x
input_size]). Then it runs RNN decoder, initialized with the last
encoder state, on embedded decoder_inputs.
Args:
encoder_inputs: A list of 1D int32 Tensors of shape [batch_size].
decoder_inputs: A list of 1D int32 Tensors of shape [batch_size].
cell: rnn_cell.RNNCell defining the cell function and size.
num_encoder_symbols: Integer; number of symbols on the encoder side.
num_decoder_symbols: Integer; number of symbols on the decoder side.
embedding_size: Integer, the length of the embedding vector for each symbol.
output_projection: None or a pair (W, B) of output projection weights and
biases; W has shape [output_size x num_decoder_symbols] and B has
shape [num_decoder_symbols]; if provided and feed_previous=True, each
fed previous output will first be multiplied by W and added B.
feed_previous: Boolean or scalar Boolean Tensor; if True, only the first
of decoder_inputs will be used (the "GO" symbol), and all other decoder
inputs will be taken from previous outputs (as in embedding_rnn_decoder).
If False, decoder_inputs are used as given (the standard decoder case).
dtype: The dtype of the initial state for both the encoder and encoder
rnn cells (default: tf.float32).
scope: VariableScope for the created subgraph; defaults to
"embedding_rnn_seq2seq"
Returns:
A tuple of the form (outputs, state), where:
outputs: A list of the same length as decoder_inputs of 2D Tensors with
shape [batch_size x num_decoder_symbols] containing the generated
outputs.
state: The state of each decoder cell in each time-step. This is a list
with length len(decoder_inputs) -- one item for each time-step.
It is a 2D Tensor of shape [batch_size x cell.state_size].
"""
with variable_scope.variable_scope(scope or "embedding_rnn_seq2seq"):
# Encoder.
encoder_cell = rnn_cell.EmbeddingWrapper(
cell, embedding_classes=num_encoder_symbols,
embedding_size=embedding_size)
_, encoder_state = rnn.rnn(encoder_cell, encoder_inputs, dtype=dtype)
# Decoder.
if output_projection is None:
cell = rnn_cell.OutputProjectionWrapper(cell, num_decoder_symbols)
return embedding_rnn_decoder(
decoder_inputs, encoder_state, cell, num_decoder_symbols,
embedding_size, output_projection=output_projection,
feed_previous=feed_previous, beam_search=beam_search, beam_size=beam_size)