本文整理汇总了Python中tensorflow.python.ops.rnn.dynamic_rnn方法的典型用法代码示例。如果您正苦于以下问题:Python rnn.dynamic_rnn方法的具体用法?Python rnn.dynamic_rnn怎么用?Python rnn.dynamic_rnn使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.python.ops.rnn
的用法示例。
在下文中一共展示了rnn.dynamic_rnn方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: testBuildAndTrain
# 需要导入模块: from tensorflow.python.ops import rnn [as 别名]
# 或者: from tensorflow.python.ops.rnn import dynamic_rnn [as 别名]
def testBuildAndTrain(self):
inputs = tf.random_normal([TIME_STEPS, BATCH_SIZE, INPUT_SIZE])
output, _ = rnn.dynamic_rnn(
cell=self.module,
inputs=inputs,
initial_state=self.initial_state,
time_major=True)
targets = np.random.rand(TIME_STEPS, BATCH_SIZE, NUM_READS, WORD_SIZE)
loss = tf.reduce_mean(tf.square(output - targets))
train_op = tf.train.GradientDescentOptimizer(1).minimize(loss)
init = tf.global_variables_initializer()
with self.test_session():
init.run()
train_op.run()
示例2: _build_model_op
# 需要导入模块: from tensorflow.python.ops import rnn [as 别名]
# 或者: from tensorflow.python.ops.rnn import dynamic_rnn [as 别名]
def _build_model_op(self):
with tf.variable_scope("densely_connected_bi_rnn"):
dense_bi_rnn = DenselyConnectedBiRNN(self.cfg["num_layers"], self.cfg["num_units_list"],
cell_type=self.cfg["cell_type"])
context = dense_bi_rnn(self.word_emb, seq_len=self.seq_len)
print("densely connected bi_rnn output shape: {}".format(context.get_shape().as_list()))
with tf.variable_scope("attention"):
p_context = tf.layers.dense(context, units=2 * self.cfg["num_units_list"][-1], use_bias=True,
bias_initializer=tf.constant_initializer(0.0))
context = tf.transpose(context, [1, 0, 2])
p_context = tf.transpose(p_context, [1, 0, 2])
attn_cell = AttentionCell(self.cfg["num_units_list"][-1], context, p_context)
attn_outs, _ = dynamic_rnn(attn_cell, context[1:, :, :], sequence_length=self.seq_len - 1, dtype=tf.float32,
time_major=True)
attn_outs = tf.transpose(attn_outs, [1, 0, 2])
print("attention output shape: {}".format(attn_outs.get_shape().as_list()))
with tf.variable_scope("project"):
self.logits = tf.layers.dense(attn_outs, units=self.tag_vocab_size, use_bias=True,
bias_initializer=tf.constant_initializer(0.0))
print("logits shape: {}".format(self.logits.get_shape().as_list()))
示例3: testDebugTrainingDynamicRNNWorks
# 需要导入模块: from tensorflow.python.ops import rnn [as 别名]
# 或者: from tensorflow.python.ops.rnn import dynamic_rnn [as 别名]
def testDebugTrainingDynamicRNNWorks(self):
with session.Session() as sess:
input_size = 3
state_size = 2
time_steps = 4
batch_size = 2
input_values = np.random.randn(time_steps, batch_size, input_size)
sequence_length = np.random.randint(0, time_steps, size=batch_size)
concat_inputs = array_ops.placeholder(
dtypes.float32, shape=(time_steps, batch_size, input_size))
outputs_dynamic, _ = rnn.dynamic_rnn(
_RNNCellForTest(input_size, state_size),
inputs=concat_inputs,
sequence_length=sequence_length,
time_major=True,
dtype=dtypes.float32)
toy_loss = math_ops.reduce_sum(outputs_dynamic * outputs_dynamic)
train_op = gradient_descent.GradientDescentOptimizer(
learning_rate=0.1).minimize(toy_loss, name="train_op")
sess.run(variables.global_variables_initializer())
run_options = config_pb2.RunOptions(output_partition_graphs=True)
debug_utils.watch_graph_with_blacklists(
run_options,
sess.graph,
node_name_regex_blacklist="(.*rnn/while/.*|.*TensorArray.*)",
debug_urls=self._debug_urls())
# b/36870549: Nodes with these name patterns need to be excluded from
# tfdbg in order to prevent MSAN warnings of uninitialized Tensors
# under both file:// and grpc:// debug URL schemes.
run_metadata = config_pb2.RunMetadata()
sess.run(train_op, feed_dict={concat_inputs: input_values},
options=run_options, run_metadata=run_metadata)
debug_data.DebugDumpDir(
self._dump_root, partition_graphs=run_metadata.partition_graphs)
示例4: __call__
# 需要导入模块: from tensorflow.python.ops import rnn [as 别名]
# 或者: from tensorflow.python.ops.rnn import dynamic_rnn [as 别名]
def __call__(self,
inputs,
initial_state=None,
dtype=None,
sequence_length=None,
scope=None):
is_list = isinstance(inputs, list)
if self._use_dynamic_rnn:
if is_list:
inputs = array_ops.stack(inputs)
outputs, state = rnn.dynamic_rnn(
self._cell,
inputs,
sequence_length=sequence_length,
initial_state=initial_state,
dtype=dtype,
time_major=True,
scope=scope)
if is_list:
# Convert outputs back to list
outputs = array_ops.unstack(outputs)
else: # non-dynamic rnn
if not is_list:
inputs = array_ops.unstack(inputs)
outputs, state = rnn.static_rnn(
self._cell,
inputs,
initial_state=initial_state,
dtype=dtype,
sequence_length=sequence_length,
scope=scope)
if not is_list:
# Convert outputs back to tensor
outputs = array_ops.stack(outputs)
return outputs, state
示例5: crf_log_norm
# 需要导入模块: from tensorflow.python.ops import rnn [as 别名]
# 或者: from tensorflow.python.ops.rnn import dynamic_rnn [as 别名]
def crf_log_norm(inputs, sequence_lengths, transition_params):
"""Computes the normalization for a CRF.
Args:
inputs: A [batch_size, max_seq_len, num_tags] tensor of unary potentials
to use as input to the CRF layer.
sequence_lengths: A [batch_size] vector of true sequence lengths.
transition_params: A [num_tags, num_tags] transition matrix.
Returns:
log_norm: A [batch_size] vector of normalizers for a CRF.
"""
# Split up the first and rest of the inputs in preparation for the forward
# algorithm.
first_input = array_ops.slice(inputs, [0, 0, 0], [-1, 1, -1])
first_input = array_ops.squeeze(first_input, [1])
rest_of_input = array_ops.slice(inputs, [0, 1, 0], [-1, -1, -1])
# Compute the alpha values in the forward algorithm in order to get the
# partition function.
forward_cell = CrfForwardRnnCell(transition_params)
_, alphas = rnn.dynamic_rnn(
cell=forward_cell,
inputs=rest_of_input,
sequence_length=sequence_lengths - 1,
initial_state=first_input,
dtype=dtypes.float32)
log_norm = math_ops.reduce_logsumexp(alphas, [1])
return log_norm
示例6: ndlstm_base_dynamic
# 需要导入模块: from tensorflow.python.ops import rnn [as 别名]
# 或者: from tensorflow.python.ops.rnn import dynamic_rnn [as 别名]
def ndlstm_base_dynamic(inputs, noutput, scope=None, reverse=False):
"""Run an LSTM, either forward or backward.
This is a 1D LSTM implementation using dynamic_rnn and
the TensorFlow LSTM op.
Args:
inputs: input sequence (length, batch_size, ninput)
noutput: depth of output
scope: optional scope name
reverse: run LSTM in reverse
Returns:
Output sequence (length, batch_size, noutput)
"""
with variable_scope.variable_scope(scope, "SeqLstm", [inputs]):
# TODO(tmb) make batch size, sequence_length dynamic
# example: sequence_length = tf.shape(inputs)[0]
_, batch_size, _ = _shape(inputs)
lstm_cell = rnn_cell.BasicLSTMCell(noutput, state_is_tuple=False)
state = array_ops.zeros([batch_size, lstm_cell.state_size])
sequence_length = int(inputs.get_shape()[0])
sequence_lengths = math_ops.to_int64(
array_ops.fill([batch_size], sequence_length))
if reverse:
inputs = array_ops.reverse_v2(inputs, [0])
outputs, _ = rnn.dynamic_rnn(
lstm_cell, inputs, sequence_lengths, state, time_major=True)
if reverse:
outputs = array_ops.reverse_v2(outputs, [0])
return outputs
示例7: ndlstm_base
# 需要导入模块: from tensorflow.python.ops import rnn [as 别名]
# 或者: from tensorflow.python.ops.rnn import dynamic_rnn [as 别名]
def ndlstm_base(inputs, noutput, scope=None, reverse=False, dynamic=True):
"""Implements a 1D LSTM, either forward or backward.
This is a base case for multidimensional LSTM implementations, which
tend to be used differently from sequence-to-sequence
implementations. For general 1D sequence to sequence
transformations, you may want to consider another implementation
from TF slim.
Args:
inputs: input sequence (length, batch_size, ninput)
noutput: depth of output
scope: optional scope name
reverse: run LSTM in reverse
dynamic: use dynamic_rnn
Returns:
Output sequence (length, batch_size, noutput)
"""
# TODO(tmb) maybe add option for other LSTM implementations, like
# slim.rnn.basic_lstm_cell
if dynamic:
return ndlstm_base_dynamic(inputs, noutput, scope=scope, reverse=reverse)
else:
return ndlstm_base_unrolled(inputs, noutput, scope=scope, reverse=reverse)
示例8: __call__
# 需要导入模块: from tensorflow.python.ops import rnn [as 别名]
# 或者: from tensorflow.python.ops.rnn import dynamic_rnn [as 别名]
def __call__(self,
inputs,
initial_state=None,
dtype=None,
sequence_length=None,
scope=None):
is_list = isinstance(inputs, list)
if self._use_dynamic_rnn:
if is_list:
inputs = array_ops.stack(inputs)
outputs, state = rnn.dynamic_rnn(
self._cell,
inputs,
sequence_length=sequence_length,
initial_state=initial_state,
dtype=dtype,
time_major=True,
scope=scope)
if is_list:
# Convert outputs back to list
outputs = array_ops.unstack(outputs)
else: # non-dynamic rnn
if not is_list:
inputs = array_ops.unstack(inputs)
outputs, state = contrib_rnn.static_rnn(self._cell,
inputs,
initial_state=initial_state,
dtype=dtype,
sequence_length=sequence_length,
scope=scope)
if not is_list:
# Convert outputs back to tensor
outputs = array_ops.stack(outputs)
return outputs, state
示例9: ndlstm_base_dynamic
# 需要导入模块: from tensorflow.python.ops import rnn [as 别名]
# 或者: from tensorflow.python.ops.rnn import dynamic_rnn [as 别名]
def ndlstm_base_dynamic(inputs, noutput, scope=None, reverse=False):
"""Run an LSTM, either forward or backward.
This is a 1D LSTM implementation using dynamic_rnn and
the TensorFlow LSTM op.
Args:
inputs: input sequence (length, batch_size, ninput)
noutput: depth of output
scope: optional scope name
reverse: run LSTM in reverse
Returns:
Output sequence (length, batch_size, noutput)
"""
with variable_scope.variable_scope(scope, "SeqLstm", [inputs]):
# TODO(tmb) make batch size, sequence_length dynamic
# example: sequence_length = tf.shape(inputs)[0]
_, batch_size, _ = _shape(inputs)
lstm_cell = core_rnn_cell_impl.BasicLSTMCell(noutput, state_is_tuple=False)
state = array_ops.zeros([batch_size, lstm_cell.state_size])
sequence_length = int(inputs.get_shape()[0])
sequence_lengths = math_ops.to_int64(
array_ops.fill([batch_size], sequence_length))
if reverse:
inputs = array_ops.reverse_v2(inputs, [0])
outputs, _ = rnn.dynamic_rnn(
lstm_cell, inputs, sequence_lengths, state, time_major=True)
if reverse:
outputs = array_ops.reverse_v2(outputs, [0])
return outputs
示例10: __call__
# 需要导入模块: from tensorflow.python.ops import rnn [as 别名]
# 或者: from tensorflow.python.ops.rnn import dynamic_rnn [as 别名]
def __call__(self,inputs,seq_len = None):
if self.call_cnt ==0:
self.cell = LSTMCell(self.output_dim,initializer = self.initializer(dtype=inputs.dtype))
with tf.variable_scope(self.scope) as scope:
#self.check_reuse(scope)
#if self.call_cnt ==0:
#self.cell = LSTMCell(self.output_dim,initializer = self.initializer)
#cell = BasicLSTMCell(self.output_dim)
print scope.reuse
rnn.dynamic_rnn(self.cell,inputs,seq_len,dtype = inputs.dtype)
print scope.reuse
return rnn.dynamic_rnn(self.cell,inputs,seq_len,dtype = inputs.dtype)
#return rnn.static_rnn(self.cell,inputs.as_list(),dtype = inputs.dtype)
示例11: __call__
# 需要导入模块: from tensorflow.python.ops import rnn [as 别名]
# 或者: from tensorflow.python.ops.rnn import dynamic_rnn [as 别名]
def __call__(self,inputs,seq_len = None):
if self.call_cnt ==0:
self.cell = LSTMCell(self.output_dim,initializer = self.initializer(dtype=inputs.dtype))
with tf.variable_scope(self.scope) as scope:
self.check_reuse(scope)
#if self.call_cnt ==0:
#self.cell = LSTMCell(self.output_dim,initializer = self.initializer)
#cell = BasicLSTMCell(self.output_dim)
return rnn.dynamic_rnn(self.cell,inputs,seq_len,dtype = inputs.dtype)
#return rnn.static_rnn(self.cell,inputs.as_list(),dtype = inputs.dtype)
示例12: LSTM_Model
# 需要导入模块: from tensorflow.python.ops import rnn [as 别名]
# 或者: from tensorflow.python.ops.rnn import dynamic_rnn [as 别名]
def LSTM_Model():
"""
:param x: inputs of size [T, batch_size, input_size]
:param W: matrix of fully-connected output layer weights
:param b: vector of fully-connected output layer biases
"""
cell = rnn_cell.BasicLSTMCell(hidden_dim)
outputs, states = rnn.dynamic_rnn(cell, x, dtype=tf.float32)
num_examples = tf.shape(x)[0]
W_repeated = tf.tile(tf.expand_dims(W_out, 0), [num_examples, 1, 1])
out = tf.matmul(outputs, W_repeated) + b_out
out = tf.squeeze(out)
return out
开发者ID:PacktPublishing,项目名称:Deep-Learning-with-TensorFlow-Second-Edition,代码行数:15,代码来源:TimeSeriesPredictor.py
示例13: crf_log_norm
# 需要导入模块: from tensorflow.python.ops import rnn [as 别名]
# 或者: from tensorflow.python.ops.rnn import dynamic_rnn [as 别名]
def crf_log_norm(inputs, sequence_lengths, transition_params):
"""Computes the normalization for a CRF.
Args:
inputs: A [batch_size, max_seq_len, num_tags] tensor of unary potentials
to use as input to the CRF layer.
sequence_lengths: A [batch_size] vector of true sequence lengths.
transition_params: A [num_tags, num_tags] transition matrix.
Returns:
log_norm: A [batch_size] vector of normalizers for a CRF.
"""
# Split up the first and rest of the inputs in preparation for the forward
# algorithm.
first_input = array_ops.slice(inputs, [0, 0, 0], [-1, 1, -1])
first_input = array_ops.squeeze(first_input, [1])
rest_of_input = array_ops.slice(inputs, [0, 1, 0], [-1, -1, -1])
# Compute the alpha values in the forward algorithm in order to get the
# partition function.
forward_cell = CrfForwardRnnCell(transition_params)
_, alphas = rnn.dynamic_rnn(
cell=forward_cell,
inputs=rest_of_input,
sequence_length=sequence_lengths - 1,
initial_state=first_input,
dtype=dtypes.float32)
log_norm = math_ops.reduce_logsumexp(alphas, [1])
return log_norm
# 对数似然
示例14: __call__
# 需要导入模块: from tensorflow.python.ops import rnn [as 别名]
# 或者: from tensorflow.python.ops.rnn import dynamic_rnn [as 别名]
def __call__(self,
inputs,
initial_state=None,
dtype=None,
sequence_length=None,
scope=None):
is_list = isinstance(inputs, list)
if self._use_dynamic_rnn:
if is_list:
inputs = array_ops.pack(inputs)
outputs, state = rnn.dynamic_rnn(
self._cell,
inputs,
sequence_length=sequence_length,
initial_state=initial_state,
dtype=dtype,
time_major=True,
scope=scope)
if is_list:
# Convert outputs back to list
outputs = array_ops.unpack(outputs)
else: # non-dynamic rnn
if not is_list:
inputs = array_ops.unpack(inputs)
outputs, state = rnn.rnn(self._cell,
inputs,
initial_state=initial_state,
dtype=dtype,
sequence_length=sequence_length,
scope=scope)
if not is_list:
# Convert outputs back to tensor
outputs = array_ops.pack(outputs)
return outputs, state
示例15: _construct_rnn
# 需要导入模块: from tensorflow.python.ops import rnn [as 别名]
# 或者: from tensorflow.python.ops.rnn import dynamic_rnn [as 别名]
def _construct_rnn(self, initial_state, sequence_input):
"""Apply an RNN to `features`.
The `features` dict must contain `self._inputs_key`, and the corresponding
input should be a `Tensor` of shape `[batch_size, padded_length, k]`
where `k` is the dimension of the input for each element of a sequence.
`activations` has shape `[batch_size, sequence_length, n]` where `n` is
`self._target_column.num_label_columns`. In the case of a multiclass
classifier, `n` is the number of classes.
`final_state` has shape determined by `self._cell` and its dtype must match
`self._dtype`.
Args:
initial_state: the initial state to pass the the RNN. If `None`, the
default starting state for `self._cell` is used.
sequence_input: a `Tensor` with shape `[batch_size, padded_length, d]`
that will be passed as input to the RNN.
Returns:
activations: the output of the RNN, projected to the appropriate number of
dimensions.
final_state: the final state output by the RNN.
"""
with ops.name_scope('RNN'):
rnn_outputs, final_state = rnn.dynamic_rnn(
cell=self._cell,
inputs=sequence_input,
initial_state=initial_state,
dtype=self._dtype,
parallel_iterations=self._parallel_iterations,
swap_memory=self._swap_memory,
time_major=False)
activations = layers.fully_connected(
inputs=rnn_outputs,
num_outputs=self._target_column.num_label_columns,
activation_fn=None,
trainable=True)
return activations, final_state