当前位置: 首页>>代码示例>>Python>>正文


Python parsing_ops.parse_example方法代码示例

本文整理汇总了Python中tensorflow.python.ops.parsing_ops.parse_example方法的典型用法代码示例。如果您正苦于以下问题:Python parsing_ops.parse_example方法的具体用法?Python parsing_ops.parse_example怎么用?Python parsing_ops.parse_example使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow.python.ops.parsing_ops的用法示例。


在下文中一共展示了parsing_ops.parse_example方法的11个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: build_parsing_serving_input_fn

# 需要导入模块: from tensorflow.python.ops import parsing_ops [as 别名]
# 或者: from tensorflow.python.ops.parsing_ops import parse_example [as 别名]
def build_parsing_serving_input_fn(feature_spec, default_batch_size=1):
  """Build an input_fn appropriate for serving, expecting fed tf.Examples.

  Creates an input_fn that expects a serialized tf.Example fed into a string
  placeholder.  The function parses the tf.Example according to the provided
  feature_spec, and returns all parsed Tensors as features.  This input_fn is
  for use at serving time, so the labels return value is always None.

  Args:
    feature_spec: a dict of string to `VarLenFeature`/`FixedLenFeature`.
    default_batch_size: the number of query examples expected per batch.

  Returns:
    An input_fn suitable for use in serving.
  """
  def input_fn():
    """An input_fn that expects a serialized tf.Example."""
    serialized_tf_example = array_ops.placeholder(dtype=dtypes.string,
                                                  shape=[default_batch_size],
                                                  name='input_example_tensor')
    inputs = {'examples': serialized_tf_example}
    features = parsing_ops.parse_example(serialized_tf_example, feature_spec)
    labels = None  # these are not known in serving!
    return InputFnOps(features, labels, inputs)
  return input_fn 
开发者ID:abhisuri97,项目名称:auto-alt-text-lambda-api,代码行数:27,代码来源:input_fn_utils.py

示例2: build_parsing_serving_input_receiver_fn

# 需要导入模块: from tensorflow.python.ops import parsing_ops [as 别名]
# 或者: from tensorflow.python.ops.parsing_ops import parse_example [as 别名]
def build_parsing_serving_input_receiver_fn(feature_spec,
                                            default_batch_size=None):
  """Build a serving_input_receiver_fn expecting fed tf.Examples.

  Creates an input_fn that expects a serialized tf.Example fed into a string
  placeholder.  The function parses the tf.Example according to the provided
  feature_spec, and returns all parsed Tensors as features.  This input_fn is
  for use at serving time, so the labels return value is always None.

  Args:
    feature_spec: a dict of string to `VarLenFeature`/`FixedLenFeature`.
    default_batch_size: the number of query examples expected per batch.
        Leave unset for variable batch size (recommended).

  Returns:
    A serving_input_receiver_fn suitable for use in serving.
  """
  def serving_input_receiver_fn():
    """An input_fn that expects a serialized tf.Example."""
    serialized_tf_example = array_ops.placeholder(dtype=dtypes.string,
                                                  shape=[default_batch_size],
                                                  name='input_example_tensor')
    receiver_tensors = {'examples': serialized_tf_example}
    features = parsing_ops.parse_example(serialized_tf_example, feature_spec)
    return ServingInputReceiver(features, receiver_tensors)

  return serving_input_receiver_fn 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:29,代码来源:export.py

示例3: _parse_example

# 需要导入模块: from tensorflow.python.ops import parsing_ops [as 别名]
# 或者: from tensorflow.python.ops.parsing_ops import parse_example [as 别名]
def _parse_example(serialized, features):
  parsed = parsing_ops.parse_example(serialized, features)
  result = []
  for key in sorted(features.keys()):
    val = parsed[key]
    if isinstance(val, sparse_tensor_lib.SparseTensor):
      result.extend([val.indices, val.values, val.dense_shape])
    else:
      result.append(val)
  return result 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:12,代码来源:dataset_ops.py

示例4: _apply_transform

# 需要导入模块: from tensorflow.python.ops import parsing_ops [as 别名]
# 或者: from tensorflow.python.ops.parsing_ops import parse_example [as 别名]
def _apply_transform(self, input_tensors, **kwargs):
    parsed_values = parsing_ops.parse_example(input_tensors[0],
                                              features=self._ordered_features)
    # pylint: disable=not-callable
    return self.return_type(**parsed_values) 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:7,代码来源:example_parser.py

示例5: build_parsing_serving_input_fn

# 需要导入模块: from tensorflow.python.ops import parsing_ops [as 别名]
# 或者: from tensorflow.python.ops.parsing_ops import parse_example [as 别名]
def build_parsing_serving_input_fn(feature_spec, default_batch_size=None):
  """Build an input_fn appropriate for serving, expecting fed tf.Examples.

  Creates an input_fn that expects a serialized tf.Example fed into a string
  placeholder.  The function parses the tf.Example according to the provided
  feature_spec, and returns all parsed Tensors as features.  This input_fn is
  for use at serving time, so the labels return value is always None.

  Args:
    feature_spec: a dict of string to `VarLenFeature`/`FixedLenFeature`.
    default_batch_size: the number of query examples expected per batch.
        Leave unset for variable batch size (recommended).

  Returns:
    An input_fn suitable for use in serving.
  """
  def input_fn():
    """An input_fn that expects a serialized tf.Example."""
    serialized_tf_example = array_ops.placeholder(dtype=dtypes.string,
                                                  shape=[default_batch_size],
                                                  name='input_example_tensor')
    inputs = {'examples': serialized_tf_example}
    features = parsing_ops.parse_example(serialized_tf_example, feature_spec)
    labels = None  # these are not known in serving!
    return InputFnOps(features, labels, inputs)
  return input_fn 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:28,代码来源:input_fn_utils.py

示例6: parse_example

# 需要导入模块: from tensorflow.python.ops import parsing_ops [as 别名]
# 或者: from tensorflow.python.ops.parsing_ops import parse_example [as 别名]
def parse_example(serialized, features, name=None, example_names=None):
  """Parse `Example` protos into a `dict` of labeled tensors.

  See tf.parse_example.

  Args:
    serialized: A 1-D LabeledTensor of strings, a batch of binary serialized
      `Example` protos.
    features: A `dict` mapping feature keys to `labeled_tensor.FixedLenFeature`
      values.
    name: A name for this operation (optional).
    example_names: A vector (1-D Tensor) of strings (optional), the names of
      the serialized protos in the batch.

  Returns:
    A `dict` mapping feature keys to `LabeledTensor` values. The single axis
    from `serialized` will be prepended to the axes provided by each feature.

  Raises:
    ValueError: if any feature is invalid.
  """
  serialized = core.convert_to_labeled_tensor(serialized)
  unlabeled_features = _labeled_to_unlabeled_features(features)

  unlabeled_parsed = parsing_ops.parse_example(
      serialized.tensor, unlabeled_features, name, example_names)

  parsed = {}
  for name, parsed_feature in unlabeled_parsed.items():
    axes = list(serialized.axes.values()) + features[name].axes
    parsed[name] = core.LabeledTensor(parsed_feature, axes)

  return parsed 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:35,代码来源:io_ops.py

示例7: create_example_parser_from_signatures

# 需要导入模块: from tensorflow.python.ops import parsing_ops [as 别名]
# 或者: from tensorflow.python.ops.parsing_ops import parse_example [as 别名]
def create_example_parser_from_signatures(signatures, examples_batch,
                                          single_feature_name="feature"):
  """Creates example parser from given signatures.

  Args:
    signatures: Dict of `TensorSignature` objects or single `TensorSignature`.
    examples_batch: string `Tensor` of serialized `Example` proto.
    single_feature_name: string, single feature name.

  Returns:
    features: `Tensor` or `dict` of `Tensor` objects.
  """
  feature_spec = {}
  if not isinstance(signatures, dict):
    feature_spec[single_feature_name] = signatures.get_feature_spec()
  else:
    feature_spec = {key: signatures[key].get_feature_spec()
                    for key in signatures}
  features = parsing_ops.parse_example(examples_batch, feature_spec)
  if not isinstance(signatures, dict):
    # Returns single feature, casts if needed.
    features = features[single_feature_name]
    if not signatures.dtype.is_compatible_with(features.dtype):
      features = math_ops.cast(features, signatures.dtype)
    return features
  # Returns dict of features, casts if needed.
  for name in features:
    if not signatures[name].dtype.is_compatible_with(features[name].dtype):
      features[name] = math_ops.cast(features[name], signatures[name].dtype)
  return features 
开发者ID:abhisuri97,项目名称:auto-alt-text-lambda-api,代码行数:32,代码来源:tensor_signature.py

示例8: _get_feature_ops_from_example

# 需要导入模块: from tensorflow.python.ops import parsing_ops [as 别名]
# 或者: from tensorflow.python.ops.parsing_ops import parse_example [as 别名]
def _get_feature_ops_from_example(self, examples_batch):
    column_types = layers.create_feature_spec_for_parsing((
        self._get_linear_feature_columns() or []) + (
            self._get_dnn_feature_columns() or []))
    features = parsing_ops.parse_example(examples_batch, column_types)
    return features 
开发者ID:tobegit3hub,项目名称:deep_image_model,代码行数:8,代码来源:dnn_linear_combined.py

示例9: build_parsing_serving_input_receiver_fn

# 需要导入模块: from tensorflow.python.ops import parsing_ops [as 别名]
# 或者: from tensorflow.python.ops.parsing_ops import parse_example [as 别名]
def build_parsing_serving_input_receiver_fn(feature_spec,
                                            default_batch_size=None):
  """Build a serving_input_receiver_fn expecting fed tf.Examples.

  Creates a serving_input_receiver_fn that expects a serialized tf.Example fed
  into a string placeholder.  The function parses the tf.Example according to
  the provided feature_spec, and returns all parsed Tensors as features.

  Args:
    feature_spec: a dict of string to `VarLenFeature`/`FixedLenFeature`.
    default_batch_size: the number of query examples expected per batch.
        Leave unset for variable batch size (recommended).

  Returns:
    A serving_input_receiver_fn suitable for use in serving.
  """
  def serving_input_receiver_fn():
    """An input_fn that expects a serialized tf.Example."""
    serialized_tf_example = array_ops.placeholder(dtype=dtypes.string,
                                                  shape=[default_batch_size],
                                                  name='input_example_tensor')
    receiver_tensors = {'examples': serialized_tf_example}
    features = parsing_ops.parse_example(serialized_tf_example, feature_spec)
    return ServingInputReceiver(features, receiver_tensors)

  return serving_input_receiver_fn 
开发者ID:PacktPublishing,项目名称:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代码行数:28,代码来源:export.py

示例10: read_batch_features

# 需要导入模块: from tensorflow.python.ops import parsing_ops [as 别名]
# 或者: from tensorflow.python.ops.parsing_ops import parse_example [as 别名]
def read_batch_features(file_pattern,
                          batch_size,
                          features,
                          reader,
                          reader_args=None,
                          randomize_input=True,
                          num_epochs=None,
                          capacity=10000):
    """Reads batches of Examples.

    Args:
      file_pattern: A string pattern or a placeholder with list of filenames.
      batch_size: A `tf.int64` scalar `tf.Tensor`, representing the number of
        consecutive elements of this dataset to combine in a single batch.
      features: A `dict` mapping feature keys to `FixedLenFeature` or
        `VarLenFeature` values. See `tf.parse_example`.
      reader: A function or class that can be called with a `filenames` tensor
        and (optional) `reader_args` and returns a `Dataset` of serialized
        Examples.
      reader_args: Additional arguments to pass to the reader class.
      randomize_input: Whether the input should be randomized.
      num_epochs: Integer specifying the number of times to read through the
        dataset. If None, cycles through the dataset forever.
      capacity: Capacity of the ShuffleDataset.

    Returns:
      A `Dataset`.
    """
    if isinstance(file_pattern, str):
      filenames = _get_file_names(file_pattern, randomize_input)
    else:
      filenames = file_pattern
    if reader_args:
      dataset = reader(filenames, *reader_args)
    else:
      dataset = reader(filenames)
    dataset = dataset.repeat(num_epochs)
    if randomize_input:
      dataset = dataset.shuffle(capacity)
    dataset = dataset.map(
        lambda x: _parse_example(nest.flatten(x), features)
    )
    dataset = dataset.batch(batch_size)
    return dataset 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:46,代码来源:dataset_ops.py

示例11: input_from_feature_columns

# 需要导入模块: from tensorflow.python.ops import parsing_ops [as 别名]
# 或者: from tensorflow.python.ops.parsing_ops import parse_example [as 别名]
def input_from_feature_columns(columns_to_tensors,
                               feature_columns,
                               weight_collections=None,
                               trainable=True,
                               scope=None):
  """A tf.contrib.layer style input layer builder based on FeatureColumns.

  Generally a single example in training data is described with feature columns.
  At the first layer of the model, this column oriented data should be converted
  to a single tensor. Each feature column needs a different kind of operation
  during this conversion. For example sparse features need a totally different
  handling than continuous features.

  An example usage of input_from_feature_columns is as follows:

    # Building model for training
    columns_to_tensor = tf.parse_example(...)
    first_layer = input_from_feature_columns(
        columns_to_tensors=columns_to_tensor,
        feature_columns=feature_columns)
    second_layer = fully_connected(first_layer, ...)
    ...

    where feature_columns can be defined as follows:

    occupation = sparse_column_with_hash_bucket(column_name="occupation",
                                              hash_bucket_size=1000)
    occupation_emb = embedding_column(sparse_id_column=occupation, dimension=16,
                                     combiner="sum")
    age = real_valued_column("age")
    age_buckets = bucketized_column(
        source_column=age,
        boundaries=[18, 25, 30, 35, 40, 45, 50, 55, 60, 65])

    feature_columns=[occupation_emb, age_buckets]

  Args:
    columns_to_tensors: A mapping from feature column to tensors. 'string' key
      means a base feature (not-transformed). It can have FeatureColumn as a
      key too. That means that FeatureColumn is already transformed by input
      pipeline. For example, `inflow` may have handled transformations.
    feature_columns: A set containing all the feature columns. All items in the
      set should be instances of classes derived by FeatureColumn.
    weight_collections: List of graph collections to which weights are added.
    trainable: If `True` also add variables to the graph collection
      `GraphKeys.TRAINABLE_VARIABLES` (see tf.Variable).
    scope: Optional scope for variable_scope.

  Returns:
    A Tensor which can be consumed by hidden layers in the neural network.

  Raises:
    ValueError: if FeatureColumn cannot be consumed by a neural network.
  """
  return _input_from_feature_columns(columns_to_tensors,
                                     feature_columns,
                                     weight_collections,
                                     trainable,
                                     scope,
                                     output_rank=2,
                                     default_name='input_from_feature_columns') 
开发者ID:tobegit3hub,项目名称:deep_image_model,代码行数:63,代码来源:feature_column_ops.py


注:本文中的tensorflow.python.ops.parsing_ops.parse_example方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。