本文整理汇总了Python中tensorflow.python.ops.parsing_ops.parse_example方法的典型用法代码示例。如果您正苦于以下问题:Python parsing_ops.parse_example方法的具体用法?Python parsing_ops.parse_example怎么用?Python parsing_ops.parse_example使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.python.ops.parsing_ops
的用法示例。
在下文中一共展示了parsing_ops.parse_example方法的11个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: build_parsing_serving_input_fn
# 需要导入模块: from tensorflow.python.ops import parsing_ops [as 别名]
# 或者: from tensorflow.python.ops.parsing_ops import parse_example [as 别名]
def build_parsing_serving_input_fn(feature_spec, default_batch_size=1):
"""Build an input_fn appropriate for serving, expecting fed tf.Examples.
Creates an input_fn that expects a serialized tf.Example fed into a string
placeholder. The function parses the tf.Example according to the provided
feature_spec, and returns all parsed Tensors as features. This input_fn is
for use at serving time, so the labels return value is always None.
Args:
feature_spec: a dict of string to `VarLenFeature`/`FixedLenFeature`.
default_batch_size: the number of query examples expected per batch.
Returns:
An input_fn suitable for use in serving.
"""
def input_fn():
"""An input_fn that expects a serialized tf.Example."""
serialized_tf_example = array_ops.placeholder(dtype=dtypes.string,
shape=[default_batch_size],
name='input_example_tensor')
inputs = {'examples': serialized_tf_example}
features = parsing_ops.parse_example(serialized_tf_example, feature_spec)
labels = None # these are not known in serving!
return InputFnOps(features, labels, inputs)
return input_fn
示例2: build_parsing_serving_input_receiver_fn
# 需要导入模块: from tensorflow.python.ops import parsing_ops [as 别名]
# 或者: from tensorflow.python.ops.parsing_ops import parse_example [as 别名]
def build_parsing_serving_input_receiver_fn(feature_spec,
default_batch_size=None):
"""Build a serving_input_receiver_fn expecting fed tf.Examples.
Creates an input_fn that expects a serialized tf.Example fed into a string
placeholder. The function parses the tf.Example according to the provided
feature_spec, and returns all parsed Tensors as features. This input_fn is
for use at serving time, so the labels return value is always None.
Args:
feature_spec: a dict of string to `VarLenFeature`/`FixedLenFeature`.
default_batch_size: the number of query examples expected per batch.
Leave unset for variable batch size (recommended).
Returns:
A serving_input_receiver_fn suitable for use in serving.
"""
def serving_input_receiver_fn():
"""An input_fn that expects a serialized tf.Example."""
serialized_tf_example = array_ops.placeholder(dtype=dtypes.string,
shape=[default_batch_size],
name='input_example_tensor')
receiver_tensors = {'examples': serialized_tf_example}
features = parsing_ops.parse_example(serialized_tf_example, feature_spec)
return ServingInputReceiver(features, receiver_tensors)
return serving_input_receiver_fn
示例3: _parse_example
# 需要导入模块: from tensorflow.python.ops import parsing_ops [as 别名]
# 或者: from tensorflow.python.ops.parsing_ops import parse_example [as 别名]
def _parse_example(serialized, features):
parsed = parsing_ops.parse_example(serialized, features)
result = []
for key in sorted(features.keys()):
val = parsed[key]
if isinstance(val, sparse_tensor_lib.SparseTensor):
result.extend([val.indices, val.values, val.dense_shape])
else:
result.append(val)
return result
示例4: _apply_transform
# 需要导入模块: from tensorflow.python.ops import parsing_ops [as 别名]
# 或者: from tensorflow.python.ops.parsing_ops import parse_example [as 别名]
def _apply_transform(self, input_tensors, **kwargs):
parsed_values = parsing_ops.parse_example(input_tensors[0],
features=self._ordered_features)
# pylint: disable=not-callable
return self.return_type(**parsed_values)
示例5: build_parsing_serving_input_fn
# 需要导入模块: from tensorflow.python.ops import parsing_ops [as 别名]
# 或者: from tensorflow.python.ops.parsing_ops import parse_example [as 别名]
def build_parsing_serving_input_fn(feature_spec, default_batch_size=None):
"""Build an input_fn appropriate for serving, expecting fed tf.Examples.
Creates an input_fn that expects a serialized tf.Example fed into a string
placeholder. The function parses the tf.Example according to the provided
feature_spec, and returns all parsed Tensors as features. This input_fn is
for use at serving time, so the labels return value is always None.
Args:
feature_spec: a dict of string to `VarLenFeature`/`FixedLenFeature`.
default_batch_size: the number of query examples expected per batch.
Leave unset for variable batch size (recommended).
Returns:
An input_fn suitable for use in serving.
"""
def input_fn():
"""An input_fn that expects a serialized tf.Example."""
serialized_tf_example = array_ops.placeholder(dtype=dtypes.string,
shape=[default_batch_size],
name='input_example_tensor')
inputs = {'examples': serialized_tf_example}
features = parsing_ops.parse_example(serialized_tf_example, feature_spec)
labels = None # these are not known in serving!
return InputFnOps(features, labels, inputs)
return input_fn
示例6: parse_example
# 需要导入模块: from tensorflow.python.ops import parsing_ops [as 别名]
# 或者: from tensorflow.python.ops.parsing_ops import parse_example [as 别名]
def parse_example(serialized, features, name=None, example_names=None):
"""Parse `Example` protos into a `dict` of labeled tensors.
See tf.parse_example.
Args:
serialized: A 1-D LabeledTensor of strings, a batch of binary serialized
`Example` protos.
features: A `dict` mapping feature keys to `labeled_tensor.FixedLenFeature`
values.
name: A name for this operation (optional).
example_names: A vector (1-D Tensor) of strings (optional), the names of
the serialized protos in the batch.
Returns:
A `dict` mapping feature keys to `LabeledTensor` values. The single axis
from `serialized` will be prepended to the axes provided by each feature.
Raises:
ValueError: if any feature is invalid.
"""
serialized = core.convert_to_labeled_tensor(serialized)
unlabeled_features = _labeled_to_unlabeled_features(features)
unlabeled_parsed = parsing_ops.parse_example(
serialized.tensor, unlabeled_features, name, example_names)
parsed = {}
for name, parsed_feature in unlabeled_parsed.items():
axes = list(serialized.axes.values()) + features[name].axes
parsed[name] = core.LabeledTensor(parsed_feature, axes)
return parsed
示例7: create_example_parser_from_signatures
# 需要导入模块: from tensorflow.python.ops import parsing_ops [as 别名]
# 或者: from tensorflow.python.ops.parsing_ops import parse_example [as 别名]
def create_example_parser_from_signatures(signatures, examples_batch,
single_feature_name="feature"):
"""Creates example parser from given signatures.
Args:
signatures: Dict of `TensorSignature` objects or single `TensorSignature`.
examples_batch: string `Tensor` of serialized `Example` proto.
single_feature_name: string, single feature name.
Returns:
features: `Tensor` or `dict` of `Tensor` objects.
"""
feature_spec = {}
if not isinstance(signatures, dict):
feature_spec[single_feature_name] = signatures.get_feature_spec()
else:
feature_spec = {key: signatures[key].get_feature_spec()
for key in signatures}
features = parsing_ops.parse_example(examples_batch, feature_spec)
if not isinstance(signatures, dict):
# Returns single feature, casts if needed.
features = features[single_feature_name]
if not signatures.dtype.is_compatible_with(features.dtype):
features = math_ops.cast(features, signatures.dtype)
return features
# Returns dict of features, casts if needed.
for name in features:
if not signatures[name].dtype.is_compatible_with(features[name].dtype):
features[name] = math_ops.cast(features[name], signatures[name].dtype)
return features
示例8: _get_feature_ops_from_example
# 需要导入模块: from tensorflow.python.ops import parsing_ops [as 别名]
# 或者: from tensorflow.python.ops.parsing_ops import parse_example [as 别名]
def _get_feature_ops_from_example(self, examples_batch):
column_types = layers.create_feature_spec_for_parsing((
self._get_linear_feature_columns() or []) + (
self._get_dnn_feature_columns() or []))
features = parsing_ops.parse_example(examples_batch, column_types)
return features
示例9: build_parsing_serving_input_receiver_fn
# 需要导入模块: from tensorflow.python.ops import parsing_ops [as 别名]
# 或者: from tensorflow.python.ops.parsing_ops import parse_example [as 别名]
def build_parsing_serving_input_receiver_fn(feature_spec,
default_batch_size=None):
"""Build a serving_input_receiver_fn expecting fed tf.Examples.
Creates a serving_input_receiver_fn that expects a serialized tf.Example fed
into a string placeholder. The function parses the tf.Example according to
the provided feature_spec, and returns all parsed Tensors as features.
Args:
feature_spec: a dict of string to `VarLenFeature`/`FixedLenFeature`.
default_batch_size: the number of query examples expected per batch.
Leave unset for variable batch size (recommended).
Returns:
A serving_input_receiver_fn suitable for use in serving.
"""
def serving_input_receiver_fn():
"""An input_fn that expects a serialized tf.Example."""
serialized_tf_example = array_ops.placeholder(dtype=dtypes.string,
shape=[default_batch_size],
name='input_example_tensor')
receiver_tensors = {'examples': serialized_tf_example}
features = parsing_ops.parse_example(serialized_tf_example, feature_spec)
return ServingInputReceiver(features, receiver_tensors)
return serving_input_receiver_fn
开发者ID:PacktPublishing,项目名称:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代码行数:28,代码来源:export.py
示例10: read_batch_features
# 需要导入模块: from tensorflow.python.ops import parsing_ops [as 别名]
# 或者: from tensorflow.python.ops.parsing_ops import parse_example [as 别名]
def read_batch_features(file_pattern,
batch_size,
features,
reader,
reader_args=None,
randomize_input=True,
num_epochs=None,
capacity=10000):
"""Reads batches of Examples.
Args:
file_pattern: A string pattern or a placeholder with list of filenames.
batch_size: A `tf.int64` scalar `tf.Tensor`, representing the number of
consecutive elements of this dataset to combine in a single batch.
features: A `dict` mapping feature keys to `FixedLenFeature` or
`VarLenFeature` values. See `tf.parse_example`.
reader: A function or class that can be called with a `filenames` tensor
and (optional) `reader_args` and returns a `Dataset` of serialized
Examples.
reader_args: Additional arguments to pass to the reader class.
randomize_input: Whether the input should be randomized.
num_epochs: Integer specifying the number of times to read through the
dataset. If None, cycles through the dataset forever.
capacity: Capacity of the ShuffleDataset.
Returns:
A `Dataset`.
"""
if isinstance(file_pattern, str):
filenames = _get_file_names(file_pattern, randomize_input)
else:
filenames = file_pattern
if reader_args:
dataset = reader(filenames, *reader_args)
else:
dataset = reader(filenames)
dataset = dataset.repeat(num_epochs)
if randomize_input:
dataset = dataset.shuffle(capacity)
dataset = dataset.map(
lambda x: _parse_example(nest.flatten(x), features)
)
dataset = dataset.batch(batch_size)
return dataset
示例11: input_from_feature_columns
# 需要导入模块: from tensorflow.python.ops import parsing_ops [as 别名]
# 或者: from tensorflow.python.ops.parsing_ops import parse_example [as 别名]
def input_from_feature_columns(columns_to_tensors,
feature_columns,
weight_collections=None,
trainable=True,
scope=None):
"""A tf.contrib.layer style input layer builder based on FeatureColumns.
Generally a single example in training data is described with feature columns.
At the first layer of the model, this column oriented data should be converted
to a single tensor. Each feature column needs a different kind of operation
during this conversion. For example sparse features need a totally different
handling than continuous features.
An example usage of input_from_feature_columns is as follows:
# Building model for training
columns_to_tensor = tf.parse_example(...)
first_layer = input_from_feature_columns(
columns_to_tensors=columns_to_tensor,
feature_columns=feature_columns)
second_layer = fully_connected(first_layer, ...)
...
where feature_columns can be defined as follows:
occupation = sparse_column_with_hash_bucket(column_name="occupation",
hash_bucket_size=1000)
occupation_emb = embedding_column(sparse_id_column=occupation, dimension=16,
combiner="sum")
age = real_valued_column("age")
age_buckets = bucketized_column(
source_column=age,
boundaries=[18, 25, 30, 35, 40, 45, 50, 55, 60, 65])
feature_columns=[occupation_emb, age_buckets]
Args:
columns_to_tensors: A mapping from feature column to tensors. 'string' key
means a base feature (not-transformed). It can have FeatureColumn as a
key too. That means that FeatureColumn is already transformed by input
pipeline. For example, `inflow` may have handled transformations.
feature_columns: A set containing all the feature columns. All items in the
set should be instances of classes derived by FeatureColumn.
weight_collections: List of graph collections to which weights are added.
trainable: If `True` also add variables to the graph collection
`GraphKeys.TRAINABLE_VARIABLES` (see tf.Variable).
scope: Optional scope for variable_scope.
Returns:
A Tensor which can be consumed by hidden layers in the neural network.
Raises:
ValueError: if FeatureColumn cannot be consumed by a neural network.
"""
return _input_from_feature_columns(columns_to_tensors,
feature_columns,
weight_collections,
trainable,
scope,
output_rank=2,
default_name='input_from_feature_columns')