本文整理汇总了Python中tensorflow.python.ops.parsing_ops.decode_raw方法的典型用法代码示例。如果您正苦于以下问题:Python parsing_ops.decode_raw方法的具体用法?Python parsing_ops.decode_raw怎么用?Python parsing_ops.decode_raw使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.python.ops.parsing_ops
的用法示例。
在下文中一共展示了parsing_ops.decode_raw方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __init__
# 需要导入模块: from tensorflow.python.ops import parsing_ops [as 别名]
# 或者: from tensorflow.python.ops.parsing_ops import decode_raw [as 别名]
def __init__(self,
image_key=None,
format_key=None,
shape=None,
channels=3,
dtype=dtypes.uint8,
repeated=False):
"""Initializes the image.
Args:
image_key: the name of the TF-Example feature in which the encoded image
is stored.
format_key: the name of the TF-Example feature in which the image format
is stored.
shape: the output shape of the image as 1-D `Tensor`
[height, width, channels]. If provided, the image is reshaped
accordingly. If left as None, no reshaping is done. A shape should
be supplied only if all the stored images have the same shape.
channels: the number of channels in the image.
dtype: images will be decoded at this bit depth. Different formats
support different bit depths.
See tf.image.decode_image,
tf.decode_raw,
repeated: if False, decodes a single image. If True, decodes a
variable number of image strings from a 1D tensor of strings.
"""
if not image_key:
image_key = 'image/encoded'
if not format_key:
format_key = 'image/format'
super(Image, self).__init__([image_key, format_key])
self._image_key = image_key
self._format_key = format_key
self._shape = shape
self._channels = channels
self._dtype = dtype
self._repeated = repeated
示例2: _decode
# 需要导入模块: from tensorflow.python.ops import parsing_ops [as 别名]
# 或者: from tensorflow.python.ops.parsing_ops import decode_raw [as 别名]
def _decode(self, image_buffer, image_format):
"""Decodes the image buffer.
Args:
image_buffer: The tensor representing the encoded image tensor.
image_format: The image format for the image in `image_buffer`. If image
format is `raw`, all images are expected to be in this format, otherwise
this op can decode a mix of `jpg` and `png` formats.
Returns:
A tensor that represents decoded image of self._shape, or
(?, ?, self._channels) if self._shape is not specified.
"""
def decode_image():
"""Decodes a png or jpg based on the headers."""
return image_ops.decode_image(image_buffer, self._channels)
def decode_raw():
"""Decodes a raw image."""
return parsing_ops.decode_raw(image_buffer, out_type=self._dtype)
pred_fn_pairs = {
math_ops.logical_or(
math_ops.equal(image_format, 'raw'),
math_ops.equal(image_format, 'RAW')): decode_raw,
}
image = control_flow_ops.case(
pred_fn_pairs, default=decode_image, exclusive=True)
image.set_shape([None, None, self._channels])
if self._shape is not None:
image = array_ops.reshape(image, self._shape)
return image
示例3: _decode
# 需要导入模块: from tensorflow.python.ops import parsing_ops [as 别名]
# 或者: from tensorflow.python.ops.parsing_ops import decode_raw [as 别名]
def _decode(self, image_buffer, image_format):
"""Decodes the image buffer.
Args:
image_buffer: T tensor representing the encoded image tensor.
image_format: The image format for the image in `image_buffer`.
Returns:
A decoder image.
"""
def decode_png():
return image_ops.decode_png(image_buffer, self._channels)
def decode_raw():
return parsing_ops.decode_raw(image_buffer, dtypes.uint8)
def decode_jpg():
return image_ops.decode_jpeg(image_buffer, self._channels)
image = control_flow_ops.case({
math_ops.logical_or(math_ops.equal(image_format, 'png'),
math_ops.equal(image_format, 'PNG')): decode_png,
math_ops.logical_or(math_ops.equal(image_format, 'raw'),
math_ops.equal(image_format, 'RAW')): decode_raw,
}, default=decode_jpg, exclusive=True)
image.set_shape([None, None, self._channels])
if self._shape is not None:
image = array_ops.reshape(image, self._shape)
return image
示例4: _decode
# 需要导入模块: from tensorflow.python.ops import parsing_ops [as 别名]
# 或者: from tensorflow.python.ops.parsing_ops import decode_raw [as 别名]
def _decode(self, image_buffer, image_format):
"""Decodes the image buffer.
Args:
image_buffer: The tensor representing the encoded image tensor.
image_format: The image format for the image in `image_buffer`.
Returns:
A tensor that represents decoded image of self._shape, or
(?, ?, self._channels) if self._shape is not specified.
"""
def decode_png():
return image_ops.decode_png(image_buffer, self._channels)
def decode_raw():
return parsing_ops.decode_raw(image_buffer, dtypes.uint8)
def decode_jpg():
return image_ops.decode_jpeg(image_buffer, self._channels)
# For RGBA images JPEG is not a valid decoder option.
if self._channels > 3:
pred_fn_pairs = {
math_ops.logical_or(
math_ops.equal(image_format, 'raw'),
math_ops.equal(image_format, 'RAW')): decode_raw,
}
default_decoder = decode_png
else:
pred_fn_pairs = {
math_ops.logical_or(
math_ops.equal(image_format, 'png'),
math_ops.equal(image_format, 'PNG')): decode_png,
math_ops.logical_or(
math_ops.equal(image_format, 'raw'),
math_ops.equal(image_format, 'RAW')): decode_raw,
}
default_decoder = decode_jpg
image = control_flow_ops.case(
pred_fn_pairs, default=default_decoder, exclusive=True)
image.set_shape([None, None, self._channels])
if self._shape is not None:
image = array_ops.reshape(image, self._shape)
return image
示例5: __init__
# 需要导入模块: from tensorflow.python.ops import parsing_ops [as 别名]
# 或者: from tensorflow.python.ops.parsing_ops import decode_raw [as 别名]
def __init__(self,
image_key=None,
format_key=None,
shape=None,
channels=3,
dtype=dtypes.uint8,
repeated=False,
dct_method=''):
"""Initializes the image.
Args:
image_key: the name of the TF-Example feature in which the encoded image
is stored.
format_key: the name of the TF-Example feature in which the image format
is stored.
shape: the output shape of the image as 1-D `Tensor`
[height, width, channels]. If provided, the image is reshaped
accordingly. If left as None, no reshaping is done. A shape should
be supplied only if all the stored images have the same shape.
channels: the number of channels in the image.
dtype: images will be decoded at this bit depth. Different formats
support different bit depths.
See tf.image.decode_image,
tf.io.decode_raw,
repeated: if False, decodes a single image. If True, decodes a
variable number of image strings from a 1D tensor of strings.
dct_method: An optional string. Defaults to empty string. It only takes
effect when image format is jpeg, used to specify a hint about the
algorithm used for jpeg decompression. Currently valid values
are ['INTEGER_FAST', 'INTEGER_ACCURATE']. The hint may be ignored, for
example, the jpeg library does not have that specific option.
"""
if not image_key:
image_key = 'image/encoded'
if not format_key:
format_key = 'image/format'
super(Image, self).__init__([image_key, format_key])
self._image_key = image_key
self._format_key = format_key
self._shape = shape
self._channels = channels
self._dtype = dtype
self._repeated = repeated
self._dct_method = dct_method
示例6: _decode
# 需要导入模块: from tensorflow.python.ops import parsing_ops [as 别名]
# 或者: from tensorflow.python.ops.parsing_ops import decode_raw [as 别名]
def _decode(self, image_buffer, image_format):
"""Decodes the image buffer.
Args:
image_buffer: The tensor representing the encoded image tensor.
image_format: The image format for the image in `image_buffer`. If image
format is `raw`, all images are expected to be in this format, otherwise
this op can decode a mix of `jpg` and `png` formats.
Returns:
A tensor that represents decoded image of self._shape, or
(?, ?, self._channels) if self._shape is not specified.
"""
def decode_image():
"""Decodes a image based on the headers."""
return math_ops.cast(
image_ops.decode_image(image_buffer, channels=self._channels),
self._dtype)
def decode_jpeg():
"""Decodes a jpeg image with specified '_dct_method'."""
return math_ops.cast(
image_ops.decode_jpeg(
image_buffer,
channels=self._channels,
dct_method=self._dct_method), self._dtype)
def check_jpeg():
"""Checks if an image is jpeg."""
# For jpeg, we directly use image_ops.decode_jpeg rather than decode_image
# in order to feed the jpeg specify parameter 'dct_method'.
return control_flow_ops.cond(
image_ops.is_jpeg(image_buffer),
decode_jpeg,
decode_image,
name='cond_jpeg')
def decode_raw():
"""Decodes a raw image."""
return parsing_ops.decode_raw(image_buffer, out_type=self._dtype)
pred_fn_pairs = [(math_ops.logical_or(
math_ops.equal(image_format, 'raw'),
math_ops.equal(image_format, 'RAW')), decode_raw)]
image = control_flow_ops.case(
pred_fn_pairs, default=check_jpeg, exclusive=True)
image.set_shape([None, None, self._channels])
if self._shape is not None:
image = array_ops.reshape(image, self._shape)
return image