本文整理汇总了Python中tensorflow.python.ops.parsing_ops.VarLenFeature方法的典型用法代码示例。如果您正苦于以下问题:Python parsing_ops.VarLenFeature方法的具体用法?Python parsing_ops.VarLenFeature怎么用?Python parsing_ops.VarLenFeature使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.python.ops.parsing_ops
的用法示例。
在下文中一共展示了parsing_ops.VarLenFeature方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _parse_example_spec
# 需要导入模块: from tensorflow.python.ops import parsing_ops [as 别名]
# 或者: from tensorflow.python.ops.parsing_ops import VarLenFeature [as 别名]
def _parse_example_spec(self):
"""Returns a `tf.Example` parsing spec as dict.
It is used for get_parsing_spec for `tf.parse_example`. Returned spec is a
dict from keys ('string') to `VarLenFeature`, `FixedLenFeature`, and other
supported objects. Please check documentation of ${tf.parse_example} for all
supported spec objects.
Let's say a Feature column depends on raw feature ('raw') and another
`_FeatureColumn` (input_fc). One possible implementation of
_parse_example_spec is as follows:
```python
spec = {'raw': tf.FixedLenFeature(...)}
spec.update(input_fc._parse_example_spec)
return spec
```
"""
pass
示例2: _get_sparse_tensors
# 需要导入模块: from tensorflow.python.ops import parsing_ops [as 别名]
# 或者: from tensorflow.python.ops.parsing_ops import VarLenFeature [as 别名]
def _get_sparse_tensors(self,
inputs,
weight_collections=None,
trainable=None):
"""Returns an IdWeightPair.
`IdWeightPair` is a pair of `SparseTensor`s which represents ids and
weights.
`IdWeightPair.id_tensor` is typically a `batch_size` x `num_buckets`
`SparseTensor` of `int64`. `IdWeightPair.weight_tensor` is either a
`SparseTensor` of `float` or `None` to indicate all weights should be
taken to be 1. If specified, `weight_tensor` must have exactly the same
shape and indices as `sp_ids`. Expected `SparseTensor` is same as parsing
output of a `VarLenFeature` which is a ragged matrix.
Args:
inputs: A `LazyBuilder` as a cache to get input tensors required to
create `IdWeightPair`.
weight_collections: List of graph collections to which variables (if any
will be created) are added.
trainable: If `True` also add variables to the graph collection
`GraphKeys.TRAINABLE_VARIABLES` (see ${tf.get_variable}).
"""
pass
示例3: make_place_holder_tensors_for_base_features
# 需要导入模块: from tensorflow.python.ops import parsing_ops [as 别名]
# 或者: from tensorflow.python.ops.parsing_ops import VarLenFeature [as 别名]
def make_place_holder_tensors_for_base_features(feature_columns):
"""Returns placeholder tensors for inference.
Args:
feature_columns: An iterable containing all the feature columns. All items
should be instances of classes derived from _FeatureColumn.
Returns:
A dict mapping feature keys to SparseTensors (sparse columns) or
placeholder Tensors (dense columns).
"""
# Get dict mapping features to FixedLenFeature or VarLenFeature values.
dict_for_parse_example = create_feature_spec_for_parsing(feature_columns)
placeholders = {}
for column_name, column_type in dict_for_parse_example.items():
if isinstance(column_type, parsing_ops.VarLenFeature):
# Sparse placeholder for sparse tensors.
placeholders[column_name] = array_ops.sparse_placeholder(
column_type.dtype, name="Placeholder_{}".format(column_name))
else:
# Simple placeholder for dense tensors.
placeholders[column_name] = array_ops.placeholder(
column_type.dtype,
shape=(None, column_type.shape[0]),
name="Placeholder_{}".format(column_name))
return placeholders
示例4: testDecodeExampleWithVarLenTensor
# 需要导入模块: from tensorflow.python.ops import parsing_ops [as 别名]
# 或者: from tensorflow.python.ops.parsing_ops import VarLenFeature [as 别名]
def testDecodeExampleWithVarLenTensor(self):
np_array = np.array([[[1], [2], [3]], [[4], [5], [6]]])
example = example_pb2.Example(features=feature_pb2.Features(feature={
'labels': self._EncodedInt64Feature(np_array),
}))
serialized_example = example.SerializeToString()
with self.test_session():
serialized_example = array_ops.reshape(serialized_example, shape=[])
keys_to_features = {
'labels': parsing_ops.VarLenFeature(dtype=dtypes.int64),
}
items_to_handlers = {'labels': tfexample_decoder.Tensor('labels'),}
decoder = tfexample_decoder.TFExampleDecoder(keys_to_features,
items_to_handlers)
[tf_labels] = decoder.decode(serialized_example, ['labels'])
labels = tf_labels.eval()
self.assertAllEqual(labels, np_array.flatten())
示例5: testDecodeExampleWithVarLenTensorToDense
# 需要导入模块: from tensorflow.python.ops import parsing_ops [as 别名]
# 或者: from tensorflow.python.ops.parsing_ops import VarLenFeature [as 别名]
def testDecodeExampleWithVarLenTensorToDense(self):
np_array = np.array([[1, 2, 3], [4, 5, 6]])
example = example_pb2.Example(features=feature_pb2.Features(feature={
'labels': self._EncodedInt64Feature(np_array),
}))
serialized_example = example.SerializeToString()
with self.test_session():
serialized_example = array_ops.reshape(serialized_example, shape=[])
keys_to_features = {
'labels': parsing_ops.VarLenFeature(dtype=dtypes.int64),
}
items_to_handlers = {
'labels': tfexample_decoder.Tensor(
'labels', shape=np_array.shape),
}
decoder = tfexample_decoder.TFExampleDecoder(keys_to_features,
items_to_handlers)
[tf_labels] = decoder.decode(serialized_example, ['labels'])
labels = tf_labels.eval()
self.assertAllEqual(labels, np_array)
示例6: testDecodeExampleWithSparseTensor
# 需要导入模块: from tensorflow.python.ops import parsing_ops [as 别名]
# 或者: from tensorflow.python.ops.parsing_ops import VarLenFeature [as 别名]
def testDecodeExampleWithSparseTensor(self):
np_indices = np.array([[1], [2], [5]])
np_values = np.array([0.1, 0.2, 0.6]).astype('f')
example = example_pb2.Example(features=feature_pb2.Features(feature={
'indices': self._EncodedInt64Feature(np_indices),
'values': self._EncodedFloatFeature(np_values),
}))
serialized_example = example.SerializeToString()
with self.test_session():
serialized_example = array_ops.reshape(serialized_example, shape=[])
keys_to_features = {
'indices': parsing_ops.VarLenFeature(dtype=dtypes.int64),
'values': parsing_ops.VarLenFeature(dtype=dtypes.float32),
}
items_to_handlers = {'labels': tfexample_decoder.SparseTensor(),}
decoder = tfexample_decoder.TFExampleDecoder(keys_to_features,
items_to_handlers)
[tf_labels] = decoder.decode(serialized_example, ['labels'])
labels = tf_labels.eval()
self.assertAllEqual(labels.indices, np_indices)
self.assertAllEqual(labels.values, np_values)
self.assertAllEqual(labels.dense_shape, np_values.shape)
示例7: testDecodeExampleWithVarLenTensor
# 需要导入模块: from tensorflow.python.ops import parsing_ops [as 别名]
# 或者: from tensorflow.python.ops.parsing_ops import VarLenFeature [as 别名]
def testDecodeExampleWithVarLenTensor(self):
np_array = np.array([[[1], [2], [3]], [[4], [5], [6]]])
example = tf.train.Example(
features=tf.train.Features(feature={
'labels': self._EncodedInt64Feature(np_array),
}))
serialized_example = example.SerializeToString()
with self.cached_session():
serialized_example = array_ops.reshape(serialized_example, shape=[])
keys_to_features = {
'labels': parsing_ops.VarLenFeature(dtype=tf.int64),
}
items_to_handlers = {
'labels': tfexample_decoder.Tensor('labels'),
}
decoder = tfexample_decoder.TFExampleDecoder(keys_to_features,
items_to_handlers)
[tf_labels] = decoder.decode(serialized_example, ['labels'])
labels = tf_labels.eval()
self.assertAllEqual(labels, np_array.flatten())
示例8: testDecodeExampleWithVarLenTensorToDense
# 需要导入模块: from tensorflow.python.ops import parsing_ops [as 别名]
# 或者: from tensorflow.python.ops.parsing_ops import VarLenFeature [as 别名]
def testDecodeExampleWithVarLenTensorToDense(self):
np_array = np.array([[1, 2, 3], [4, 5, 6]])
example = tf.train.Example(
features=tf.train.Features(feature={
'labels': self._EncodedInt64Feature(np_array),
}))
serialized_example = example.SerializeToString()
with self.cached_session():
serialized_example = array_ops.reshape(serialized_example, shape=[])
keys_to_features = {
'labels': parsing_ops.VarLenFeature(dtype=tf.int64),
}
items_to_handlers = {
'labels': tfexample_decoder.Tensor('labels', shape=np_array.shape),
}
decoder = tfexample_decoder.TFExampleDecoder(keys_to_features,
items_to_handlers)
[tf_labels] = decoder.decode(serialized_example, ['labels'])
labels = tf_labels.eval()
self.assertAllEqual(labels, np_array)
示例9: _to_feature_spec
# 需要导入模块: from tensorflow.python.ops import parsing_ops [as 别名]
# 或者: from tensorflow.python.ops.parsing_ops import VarLenFeature [as 别名]
def _to_feature_spec(tensor, default_value=None):
if isinstance(tensor, sparse_tensor.SparseTensor):
return parsing_ops.VarLenFeature(dtype=tensor.dtype)
else:
return parsing_ops.FixedLenFeature(shape=tensor.get_shape(),
dtype=tensor.dtype,
default_value=default_value)
示例10: config
# 需要导入模块: from tensorflow.python.ops import parsing_ops [as 别名]
# 或者: from tensorflow.python.ops.parsing_ops import VarLenFeature [as 别名]
def config(self):
return {self.column_name: parsing_ops.VarLenFeature(self.dtype)}
示例11: testDecodeExampleShapeKeyTensor
# 需要导入模块: from tensorflow.python.ops import parsing_ops [as 别名]
# 或者: from tensorflow.python.ops.parsing_ops import VarLenFeature [as 别名]
def testDecodeExampleShapeKeyTensor(self):
np_image = np.random.rand(2, 3, 1).astype('f')
np_labels = np.array([[[1], [2], [3]], [[4], [5], [6]]])
example = example_pb2.Example(features=feature_pb2.Features(feature={
'image': self._EncodedFloatFeature(np_image),
'image/shape': self._EncodedInt64Feature(np.array(np_image.shape)),
'labels': self._EncodedInt64Feature(np_labels),
'labels/shape': self._EncodedInt64Feature(np.array(np_labels.shape)),
}))
serialized_example = example.SerializeToString()
with self.test_session():
serialized_example = array_ops.reshape(serialized_example, shape=[])
keys_to_features = {
'image': parsing_ops.VarLenFeature(dtype=dtypes.float32),
'image/shape': parsing_ops.VarLenFeature(dtype=dtypes.int64),
'labels': parsing_ops.VarLenFeature(dtype=dtypes.int64),
'labels/shape': parsing_ops.VarLenFeature(dtype=dtypes.int64),
}
items_to_handlers = {
'image':
tfexample_decoder.Tensor(
'image', shape_keys='image/shape'),
'labels':
tfexample_decoder.Tensor(
'labels', shape_keys='labels/shape'),
}
decoder = tfexample_decoder.TFExampleDecoder(keys_to_features,
items_to_handlers)
[tf_image, tf_labels] = decoder.decode(serialized_example,
['image', 'labels'])
self.assertAllEqual(tf_image.eval(), np_image)
self.assertAllEqual(tf_labels.eval(), np_labels)
示例12: testDecodeExampleMultiShapeKeyTensor
# 需要导入模块: from tensorflow.python.ops import parsing_ops [as 别名]
# 或者: from tensorflow.python.ops.parsing_ops import VarLenFeature [as 别名]
def testDecodeExampleMultiShapeKeyTensor(self):
np_image = np.random.rand(2, 3, 1).astype('f')
np_labels = np.array([[[1], [2], [3]], [[4], [5], [6]]])
height, width, depth = np_labels.shape
example = example_pb2.Example(features=feature_pb2.Features(feature={
'image': self._EncodedFloatFeature(np_image),
'image/shape': self._EncodedInt64Feature(np.array(np_image.shape)),
'labels': self._EncodedInt64Feature(np_labels),
'labels/height': self._EncodedInt64Feature(np.array([height])),
'labels/width': self._EncodedInt64Feature(np.array([width])),
'labels/depth': self._EncodedInt64Feature(np.array([depth])),
}))
serialized_example = example.SerializeToString()
with self.test_session():
serialized_example = array_ops.reshape(serialized_example, shape=[])
keys_to_features = {
'image': parsing_ops.VarLenFeature(dtype=dtypes.float32),
'image/shape': parsing_ops.VarLenFeature(dtype=dtypes.int64),
'labels': parsing_ops.VarLenFeature(dtype=dtypes.int64),
'labels/height': parsing_ops.VarLenFeature(dtype=dtypes.int64),
'labels/width': parsing_ops.VarLenFeature(dtype=dtypes.int64),
'labels/depth': parsing_ops.VarLenFeature(dtype=dtypes.int64),
}
items_to_handlers = {
'image':
tfexample_decoder.Tensor(
'image', shape_keys='image/shape'),
'labels':
tfexample_decoder.Tensor(
'labels',
shape_keys=['labels/height', 'labels/width', 'labels/depth']),
}
decoder = tfexample_decoder.TFExampleDecoder(keys_to_features,
items_to_handlers)
[tf_image, tf_labels] = decoder.decode(serialized_example,
['image', 'labels'])
self.assertAllEqual(tf_image.eval(), np_image)
self.assertAllEqual(tf_labels.eval(), np_labels)
示例13: testDecodeExampleWithSparseTensorWithGivenShape
# 需要导入模块: from tensorflow.python.ops import parsing_ops [as 别名]
# 或者: from tensorflow.python.ops.parsing_ops import VarLenFeature [as 别名]
def testDecodeExampleWithSparseTensorWithGivenShape(self):
np_indices = np.array([[1], [2], [5]])
np_values = np.array([0.1, 0.2, 0.6]).astype('f')
np_shape = np.array([6])
example = example_pb2.Example(features=feature_pb2.Features(feature={
'indices': self._EncodedInt64Feature(np_indices),
'values': self._EncodedFloatFeature(np_values),
}))
serialized_example = example.SerializeToString()
with self.test_session():
serialized_example = array_ops.reshape(serialized_example, shape=[])
keys_to_features = {
'indices': parsing_ops.VarLenFeature(dtype=dtypes.int64),
'values': parsing_ops.VarLenFeature(dtype=dtypes.float32),
}
items_to_handlers = {
'labels': tfexample_decoder.SparseTensor(shape=np_shape),
}
decoder = tfexample_decoder.TFExampleDecoder(keys_to_features,
items_to_handlers)
[tf_labels] = decoder.decode(serialized_example, ['labels'])
labels = tf_labels.eval()
self.assertAllEqual(labels.indices, np_indices)
self.assertAllEqual(labels.values, np_values)
self.assertAllEqual(labels.dense_shape, np_shape)
示例14: testDecodeExampleWithSparseTensorToDense
# 需要导入模块: from tensorflow.python.ops import parsing_ops [as 别名]
# 或者: from tensorflow.python.ops.parsing_ops import VarLenFeature [as 别名]
def testDecodeExampleWithSparseTensorToDense(self):
np_indices = np.array([1, 2, 5])
np_values = np.array([0.1, 0.2, 0.6]).astype('f')
np_shape = np.array([6])
np_dense = np.array([0.0, 0.1, 0.2, 0.0, 0.0, 0.6]).astype('f')
example = example_pb2.Example(features=feature_pb2.Features(feature={
'indices': self._EncodedInt64Feature(np_indices),
'values': self._EncodedFloatFeature(np_values),
}))
serialized_example = example.SerializeToString()
with self.test_session():
serialized_example = array_ops.reshape(serialized_example, shape=[])
keys_to_features = {
'indices': parsing_ops.VarLenFeature(dtype=dtypes.int64),
'values': parsing_ops.VarLenFeature(dtype=dtypes.float32),
}
items_to_handlers = {
'labels':
tfexample_decoder.SparseTensor(
shape=np_shape, densify=True),
}
decoder = tfexample_decoder.TFExampleDecoder(keys_to_features,
items_to_handlers)
[tf_labels] = decoder.decode(serialized_example, ['labels'])
labels = tf_labels.eval()
self.assertAllClose(labels, np_dense)
示例15: testDecodeExampleWithBoundingBox
# 需要导入模块: from tensorflow.python.ops import parsing_ops [as 别名]
# 或者: from tensorflow.python.ops.parsing_ops import VarLenFeature [as 别名]
def testDecodeExampleWithBoundingBox(self):
num_bboxes = 10
np_ymin = np.random.rand(num_bboxes, 1)
np_xmin = np.random.rand(num_bboxes, 1)
np_ymax = np.random.rand(num_bboxes, 1)
np_xmax = np.random.rand(num_bboxes, 1)
np_bboxes = np.hstack([np_ymin, np_xmin, np_ymax, np_xmax])
example = example_pb2.Example(features=feature_pb2.Features(feature={
'image/object/bbox/ymin': self._EncodedFloatFeature(np_ymin),
'image/object/bbox/xmin': self._EncodedFloatFeature(np_xmin),
'image/object/bbox/ymax': self._EncodedFloatFeature(np_ymax),
'image/object/bbox/xmax': self._EncodedFloatFeature(np_xmax),
}))
serialized_example = example.SerializeToString()
with self.test_session():
serialized_example = array_ops.reshape(serialized_example, shape=[])
keys_to_features = {
'image/object/bbox/ymin': parsing_ops.VarLenFeature(dtypes.float32),
'image/object/bbox/xmin': parsing_ops.VarLenFeature(dtypes.float32),
'image/object/bbox/ymax': parsing_ops.VarLenFeature(dtypes.float32),
'image/object/bbox/xmax': parsing_ops.VarLenFeature(dtypes.float32),
}
items_to_handlers = {
'object/bbox':
tfexample_decoder.BoundingBox(['ymin', 'xmin', 'ymax', 'xmax'],
'image/object/bbox/'),
}
decoder = tfexample_decoder.TFExampleDecoder(keys_to_features,
items_to_handlers)
[tf_bboxes] = decoder.decode(serialized_example, ['object/bbox'])
bboxes = tf_bboxes.eval()
self.assertAllClose(np_bboxes, bboxes)