当前位置: 首页>>代码示例>>Python>>正文


Python nn_ops.dropout方法代码示例

本文整理汇总了Python中tensorflow.python.ops.nn_ops.dropout方法的典型用法代码示例。如果您正苦于以下问题:Python nn_ops.dropout方法的具体用法?Python nn_ops.dropout怎么用?Python nn_ops.dropout使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow.python.ops.nn_ops的用法示例。


在下文中一共展示了nn_ops.dropout方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: call

# 需要导入模块: from tensorflow.python.ops import nn_ops [as 别名]
# 或者: from tensorflow.python.ops.nn_ops import dropout [as 别名]
def call(self, inputs, state):
    """LSTM cell with layer normalization and recurrent dropout."""
    c, h = state
    args = array_ops.concat([inputs, h], 1)
    concat = self._linear(args)

    i, j, f, o = array_ops.split(value=concat, num_or_size_splits=4, axis=1)
    if self._layer_norm:
      i = self._norm(i, "input")
      j = self._norm(j, "transform")
      f = self._norm(f, "forget")
      o = self._norm(o, "output")

    g = self._activation(j)
    if (not isinstance(self._keep_prob, float)) or self._keep_prob < 1:
      g = nn_ops.dropout(g, self._keep_prob, seed=self._seed)

    new_c = (c * math_ops.sigmoid(f + self._forget_bias)
             + math_ops.sigmoid(i) * g)
    if self._layer_norm:
      new_c = self._norm(new_c, "state")
    new_h = self._activation(new_c) * math_ops.sigmoid(o)

    new_state = rnn_cell_impl.LSTMStateTuple(new_c, new_h)
    return new_h, new_state 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:27,代码来源:rnn_cell.py

示例2: pre

# 需要导入模块: from tensorflow.python.ops import nn_ops [as 别名]
# 或者: from tensorflow.python.ops.nn_ops import dropout [as 别名]
def pre(self, inputs, scope=None):
        """Preprocess inputs to be used by the cell. Assumes [N, J, *]
        [x, u]"""
        is_train = self._is_train
        keep_prob = self._keep_prob
        gate_size = self._gate_size
        with tf.variable_scope(scope or "pre"):
            x, u, _, _ = tf.split(2, 4, tf.slice(inputs, [0, 0, gate_size], [-1, -1, -1]))  # [N, J, d]
            a_raw = linear([x * u], gate_size, True, scope='a_raw', var_on_cpu=self._var_on_cpu,
                           wd=self._wd, initializer=self._initializer)
            a = tf.sigmoid(a_raw - self._forget_bias, name='a')
            if keep_prob < 1.0:
                x = tf.cond(is_train, lambda: tf.nn.dropout(x, keep_prob), lambda: x)
                u = tf.cond(is_train, lambda: tf.nn.dropout(u, keep_prob), lambda: u)
            v_t = tf.nn.tanh(linear([x, u], self._num_units, True,
                             var_on_cpu=self._var_on_cpu, wd=self._wd, scope='v_raw'), name='v')
            new_inputs = tf.concat(2, [a, x, u, v_t])  # [N, J, 3*d + 1]
        return new_inputs 
开发者ID:uwnlp,项目名称:qrn,代码行数:20,代码来源:rnn_cell.py

示例3: __call__

# 需要导入模块: from tensorflow.python.ops import nn_ops [as 别名]
# 或者: from tensorflow.python.ops.nn_ops import dropout [as 别名]
def __call__(self, inputs, state, scope=None):
    """Run the cell with the declared dropouts."""
    def _should_dropout(p):
      return (not isinstance(p, float)) or p < 1

    if _should_dropout(self._input_keep_prob):
      inputs = self._dropout(inputs, "input",
                             self._recurrent_input_noise,
                             self._input_keep_prob)
    output, new_state = self._cell(inputs, state, scope=scope)
    if _should_dropout(self._state_keep_prob):
      # Identify which subsets of the state to perform dropout on and
      # which ones to keep.
      #shallow_filtered_substructure = nest.get_traverse_shallow_structure(
      #    self._dropout_state_filter, new_state)
      shallow_filtered_substructure = self._dropout_state_filter(new_state) # TODO: GK hack
      new_state = self._dropout(new_state, "state",
                                self._recurrent_state_noise,
                                self._state_keep_prob,
                                shallow_filtered_substructure)
    if _should_dropout(self._output_keep_prob):
      output = self._dropout(output, "output",
                             self._recurrent_output_noise,
                             self._output_keep_prob)
    return output, new_state 
开发者ID:gkahn13,项目名称:GtS,代码行数:27,代码来源:rnn_dropout.py

示例4: __call__

# 需要导入模块: from tensorflow.python.ops import nn_ops [as 别名]
# 或者: from tensorflow.python.ops.nn_ops import dropout [as 别名]
def __call__(self, inputs, state, scope=None):
    """Run the cell with the declared dropouts."""
    def _should_dropout(p):
      return (not isinstance(p, float)) or p < 1

    if _should_dropout(self._input_keep_prob):
      inputs = self._dropout(inputs, "input",
                             self._recurrent_input_noise,
                             self._input_keep_prob)
    output, new_state = self._cell(inputs, state, scope)
    if _should_dropout(self._state_keep_prob):
      # Identify which subsets of the state to perform dropout on and
      # which ones to keep.
      shallow_filtered_substructure = nest.get_traverse_shallow_structure(
          self._dropout_state_filter, new_state)
      new_state = self._dropout(new_state, "state",
                                self._recurrent_state_noise,
                                self._state_keep_prob,
                                shallow_filtered_substructure)
    if _should_dropout(self._output_keep_prob):
      output = self._dropout(output, "output",
                             self._recurrent_output_noise,
                             self._output_keep_prob)
    return output, new_state 
开发者ID:PacktPublishing,项目名称:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代码行数:26,代码来源:rnn_cell_impl.py

示例5: __call__

# 需要导入模块: from tensorflow.python.ops import nn_ops [as 别名]
# 或者: from tensorflow.python.ops.nn_ops import dropout [as 别名]
def __call__(self, inputs, state, scope=None):
    """Run the cell with the declared zoneouts."""

    # compute output and new state as before
    output, new_state = self._cell(inputs, state, scope)

    # if either hidden state or memory cell zoneout is applied, then split state and process
    if self._has_hidden_state_zoneout or self._has_memory_cell_zoneout:
      # split state
      c_old, m_old = state
      c_new, m_new = new_state

      # apply zoneout to memory cell and hidden state
      c_and_m = []
      for s_old, s_new, p, has_zoneout in [(c_old, c_new, self._memory_cell_keep_prob,  self._has_memory_cell_zoneout), 
                                           (m_old, m_new, self._hidden_state_keep_prob, self._has_hidden_state_zoneout)]:
        if has_zoneout:
          if self._is_training:
            mask = nn_ops.dropout(array_ops.ones_like(s_new), p, seed=self._seed) * p # this should just random ops instead. See dropout code for how.
            s = ((1. - mask) * s_old) + (mask * s_new)
          else:
            s = ((1. - p) * s_old) + (p * s_new)
        else:
          s = s_new

        c_and_m.append(s)

      # package final results
      new_state = LSTMStateTuple(*c_and_m)
      output = new_state.h

    return output, new_state 
开发者ID:aqlaboratory,项目名称:rgn,代码行数:34,代码来源:rnn_cell_extended.py

示例6: _variational_recurrent_dropout_value

# 需要导入模块: from tensorflow.python.ops import nn_ops [as 别名]
# 或者: from tensorflow.python.ops.nn_ops import dropout [as 别名]
def _variational_recurrent_dropout_value(
      self, index, value, noise, keep_prob):
    """Performs dropout given the pre-calculated noise tensor."""
    # uniform [keep_prob, 1.0 + keep_prob)
    random_tensor = keep_prob + noise

    # 0. if [keep_prob, 1.0) and 1. if [1.0, 1.0 + keep_prob)
    binary_tensor = math_ops.floor(random_tensor)
    ret = math_ops.div(value, keep_prob) * binary_tensor
    ret.set_shape(value.get_shape())
    return ret 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:13,代码来源:rnn_cell_impl.py

示例7: _dropout

# 需要导入模块: from tensorflow.python.ops import nn_ops [as 别名]
# 或者: from tensorflow.python.ops.nn_ops import dropout [as 别名]
def _dropout(self, values, salt_prefix, recurrent_noise, keep_prob):
    """Decides whether to perform standard dropout or recurrent dropout."""
    if not self._variational_recurrent:
      def dropout(i, v):
        return nn_ops.dropout(
            v, keep_prob=keep_prob, seed=self._gen_seed(salt_prefix, i))
      return _enumerated_map_structure(dropout, values)
    else:
      def dropout(i, v, n):
        return self._variational_recurrent_dropout_value(i, v, n, keep_prob)
      return _enumerated_map_structure(dropout, values, recurrent_noise) 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:13,代码来源:rnn_cell_impl.py

示例8: __init__

# 需要导入模块: from tensorflow.python.ops import nn_ops [as 别名]
# 或者: from tensorflow.python.ops.nn_ops import dropout [as 别名]
def __init__(self, num_units, forget_bias=1.0,
               input_size=None, activation=math_ops.tanh,
               layer_norm=True, norm_gain=1.0, norm_shift=0.0,
               dropout_keep_prob=1.0, dropout_prob_seed=None,
               reuse=None):
    """Initializes the basic LSTM cell.

    Args:
      num_units: int, The number of units in the LSTM cell.
      forget_bias: float, The bias added to forget gates (see above).
      input_size: Deprecated and unused.
      activation: Activation function of the inner states.
      layer_norm: If `True`, layer normalization will be applied.
      norm_gain: float, The layer normalization gain initial value. If
        `layer_norm` has been set to `False`, this argument will be ignored.
      norm_shift: float, The layer normalization shift initial value. If
        `layer_norm` has been set to `False`, this argument will be ignored.
      dropout_keep_prob: unit Tensor or float between 0 and 1 representing the
        recurrent dropout probability value. If float and 1.0, no dropout will
        be applied.
      dropout_prob_seed: (optional) integer, the randomness seed.
      reuse: (optional) Python boolean describing whether to reuse variables
        in an existing scope.  If not `True`, and the existing scope already has
        the given variables, an error is raised.
    """
    super(LayerNormBasicLSTMCell, self).__init__(_reuse=reuse)

    if input_size is not None:
      logging.warn("%s: The input_size parameter is deprecated.", self)

    self._num_units = num_units
    self._activation = activation
    self._forget_bias = forget_bias
    self._keep_prob = dropout_keep_prob
    self._seed = dropout_prob_seed
    self._layer_norm = layer_norm
    self._g = norm_gain
    self._b = norm_shift
    self._reuse = reuse 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:41,代码来源:rnn_cell.py

示例9: __init__

# 需要导入模块: from tensorflow.python.ops import nn_ops [as 别名]
# 或者: from tensorflow.python.ops.nn_ops import dropout [as 别名]
def __init__(self, num_units, forget_bias=1.0,
               input_size=None, activation=math_ops.tanh,
               layer_norm=True, norm_gain=1.0, norm_shift=0.0,
               dropout_keep_prob=1.0, dropout_prob_seed=None):
    """Initializes the basic LSTM cell.

    Args:
      num_units: int, The number of units in the LSTM cell.
      forget_bias: float, The bias added to forget gates (see above).
      input_size: Deprecated and unused.
      activation: Activation function of the inner states.
      layer_norm: If `True`, layer normalization will be applied.
      norm_gain: float, The layer normalization gain initial value. If
        `layer_norm` has been set to `False`, this argument will be ignored.
      norm_shift: float, The layer normalization shift initial value. If
        `layer_norm` has been set to `False`, this argument will be ignored.
      dropout_keep_prob: unit Tensor or float between 0 and 1 representing the
        recurrent dropout probability value. If float and 1.0, no dropout will
        be applied.
      dropout_prob_seed: (optional) integer, the randomness seed.
    """

    if input_size is not None:
      logging.warn("%s: The input_size parameter is deprecated.", self)

    self._num_units = num_units
    self._activation = activation
    self._forget_bias = forget_bias
    self._keep_prob = dropout_keep_prob
    self._seed = dropout_prob_seed
    self._layer_norm = layer_norm
    self._g = norm_gain
    self._b = norm_shift 
开发者ID:abhisuri97,项目名称:auto-alt-text-lambda-api,代码行数:35,代码来源:rnn_cell.py

示例10: __call__

# 需要导入模块: from tensorflow.python.ops import nn_ops [as 别名]
# 或者: from tensorflow.python.ops.nn_ops import dropout [as 别名]
def __call__(self, inputs, state, scope=None):
    """LSTM cell with layer normalization and recurrent dropout."""

    with vs.variable_scope(scope or "layer_norm_basic_lstm_cell"):
      c, h = state
      args = array_ops.concat([inputs, h], 1)
      concat = self._linear(args)

      i, j, f, o = array_ops.split(value=concat, num_or_size_splits=4, axis=1)
      if self._layer_norm:
        i = self._norm(i, "input")
        j = self._norm(j, "transform")
        f = self._norm(f, "forget")
        o = self._norm(o, "output")

      g = self._activation(j)
      if (not isinstance(self._keep_prob, float)) or self._keep_prob < 1:
        g = nn_ops.dropout(g, self._keep_prob, seed=self._seed)

      new_c = (c * math_ops.sigmoid(f + self._forget_bias)
               + math_ops.sigmoid(i) * g)
      if self._layer_norm:
        new_c = self._norm(new_c, "state")
      new_h = self._activation(new_c) * math_ops.sigmoid(o)

      new_state = core_rnn_cell.LSTMStateTuple(new_c, new_h)
      return new_h, new_state 
开发者ID:abhisuri97,项目名称:auto-alt-text-lambda-api,代码行数:29,代码来源:rnn_cell.py

示例11: __init__

# 需要导入模块: from tensorflow.python.ops import nn_ops [as 别名]
# 或者: from tensorflow.python.ops.nn_ops import dropout [as 别名]
def __init__(self, cell, input_keep_prob=1.0, output_keep_prob=1.0,
               seed=None):
    """Create a cell with added input and/or output dropout.

    Dropout is never used on the state.

    Args:
      cell: an RNNCell, a projection to output_size is added to it.
      input_keep_prob: unit Tensor or float between 0 and 1, input keep
        probability; if it is float and 1, no input dropout will be added.
      output_keep_prob: unit Tensor or float between 0 and 1, output keep
        probability; if it is float and 1, no output dropout will be added.
      seed: (optional) integer, the randomness seed.

    Raises:
      TypeError: if cell is not an RNNCell.
      ValueError: if keep_prob is not between 0 and 1.
    """
    if not isinstance(cell, RNNCell):
      raise TypeError("The parameter cell is not a RNNCell.")
    if (isinstance(input_keep_prob, float) and
        not (input_keep_prob >= 0.0 and input_keep_prob <= 1.0)):
      raise ValueError("Parameter input_keep_prob must be between 0 and 1: %d"
                       % input_keep_prob)
    if (isinstance(output_keep_prob, float) and
        not (output_keep_prob >= 0.0 and output_keep_prob <= 1.0)):
      raise ValueError("Parameter output_keep_prob must be between 0 and 1: %d"
                       % output_keep_prob)
    self._cell = cell
    self._input_keep_prob = input_keep_prob
    self._output_keep_prob = output_keep_prob
    self._seed = seed 
开发者ID:abhisuri97,项目名称:auto-alt-text-lambda-api,代码行数:34,代码来源:core_rnn_cell_impl.py

示例12: __call__

# 需要导入模块: from tensorflow.python.ops import nn_ops [as 别名]
# 或者: from tensorflow.python.ops.nn_ops import dropout [as 别名]
def __call__(self, inputs, state, scope=None):
    """Run the cell with the declared dropouts."""
    if (not isinstance(self._input_keep_prob, float) or
        self._input_keep_prob < 1):
      inputs = nn_ops.dropout(inputs, self._input_keep_prob, seed=self._seed)
    output, new_state = self._cell(inputs, state, scope)
    if (not isinstance(self._output_keep_prob, float) or
        self._output_keep_prob < 1):
      output = nn_ops.dropout(output, self._output_keep_prob, seed=self._seed)
    return output, new_state 
开发者ID:abhisuri97,项目名称:auto-alt-text-lambda-api,代码行数:12,代码来源:core_rnn_cell_impl.py

示例13: classifier

# 需要导入模块: from tensorflow.python.ops import nn_ops [as 别名]
# 或者: from tensorflow.python.ops.nn_ops import dropout [as 别名]
def classifier(x, phase, enc_phase=1, trim=0, scope='class', reuse=None, internal_update=False, getter=None):
    with tf.variable_scope(scope, reuse=reuse, custom_getter=getter):
        with arg_scope([leaky_relu], a=0.1), \
             arg_scope([conv2d, dense], activation=leaky_relu, bn=True, phase=phase), \
             arg_scope([batch_norm], internal_update=internal_update):

            preprocess = instance_norm if args.inorm else tf.identity
            layout = [
                (preprocess, (), {}),
                (conv2d, (96, 3, 1), {}),
                (conv2d, (96, 3, 1), {}),
                (conv2d, (96, 3, 1), {}),
                (max_pool, (2, 2), {}),
                (dropout, (), dict(training=phase)),
                (noise, (1,), dict(phase=phase)),
                (conv2d, (192, 3, 1), {}),
                (conv2d, (192, 3, 1), {}),
                (conv2d, (192, 3, 1), {}),
                (max_pool, (2, 2), {}),
                (dropout, (), dict(training=phase)),
                (noise, (1,), dict(phase=phase)),
                (conv2d, (192, 3, 1), {}),
                (conv2d, (192, 3, 1), {}),
                (conv2d, (192, 3, 1), {}),
                (avg_pool, (), dict(global_pool=True)),
                (dense, (args.Y,), dict(activation=None))
            ]

            if enc_phase:
                start = 0
                end = len(layout) - trim
            else:
                start = len(layout) - trim
                end = len(layout)

            for i in xrange(start, end):
                with tf.variable_scope('l{:d}'.format(i)):
                    f, f_args, f_kwargs = layout[i]
                    x = f(x, *f_args, **f_kwargs)

    return x 
开发者ID:RuiShu,项目名称:dirt-t,代码行数:43,代码来源:large.py

示例14: __init__

# 需要导入模块: from tensorflow.python.ops import nn_ops [as 别名]
# 或者: from tensorflow.python.ops.nn_ops import dropout [as 别名]
def __init__(self, cell, input_keep_prob=1.0, output_keep_prob=1.0,
                 seed=None, is_train=None):
        """Create a cell with added input and/or output dropout.

        Dropout is never used on the state.

        Args:
          cell: an RNNCell, a projection to output_size is added to it.
          input_keep_prob: unit Tensor or float between 0 and 1, input keep
            probability; if it is float and 1, no input dropout will be added.
          output_keep_prob: unit Tensor or float between 0 and 1, output keep
            probability; if it is float and 1, no output dropout will be added.
          seed: (optional) integer, the randomness seed.
          is_train: boolean tensor (often placeholder). If indicated, then when
            is_train is False, dropout is not applied.

        Raises:
          TypeError: if cell is not an RNNCell.
          ValueError: if keep_prob is not between 0 and 1.
        """
        if not isinstance(cell, RNNCell):
            raise TypeError("The parameter cell is not a RNNCell.")
        if (isinstance(input_keep_prob, float) and
                not (input_keep_prob >= 0.0 and input_keep_prob <= 1.0)):
            raise ValueError("Parameter input_keep_prob must be between 0 and 1: %d"
                             % input_keep_prob)
        if (isinstance(output_keep_prob, float) and
                not (output_keep_prob >= 0.0 and output_keep_prob <= 1.0)):
            raise ValueError("Parameter input_keep_prob must be between 0 and 1: %d"
                             % output_keep_prob)
        self._cell = cell
        self._input_keep_prob = input_keep_prob
        self._output_keep_prob = output_keep_prob
        self._seed = seed
        self._is_train = is_train 
开发者ID:uwnlp,项目名称:qrn,代码行数:37,代码来源:rnn_cell.py

示例15: __call__

# 需要导入模块: from tensorflow.python.ops import nn_ops [as 别名]
# 或者: from tensorflow.python.ops.nn_ops import dropout [as 别名]
def __call__(self, inputs, state, scope=None):
        """Run the cell with the declared dropouts."""
        if (not isinstance(self._input_keep_prob, float) or
                    self._input_keep_prob < 1):
            do_inputs = dropout(inputs, self._input_keep_prob, seed=self._seed)
            inputs = tf.cond(self._is_train, lambda: do_inputs, lambda: inputs)
        output, new_state = self._cell(inputs, state)
        if (not isinstance(self._output_keep_prob, float) or
                    self._output_keep_prob < 1):
            do_output = dropout(output, self._output_keep_prob, seed=self._seed)
            output = tf.cond(self._is_train, lambda: do_output, lambda: output)
        return output, new_state 
开发者ID:uwnlp,项目名称:qrn,代码行数:14,代码来源:rnn_cell.py


注:本文中的tensorflow.python.ops.nn_ops.dropout方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。