当前位置: 首页>>代码示例>>Python>>正文


Python nn.l2_loss方法代码示例

本文整理汇总了Python中tensorflow.python.ops.nn.l2_loss方法的典型用法代码示例。如果您正苦于以下问题:Python nn.l2_loss方法的具体用法?Python nn.l2_loss怎么用?Python nn.l2_loss使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow.python.ops.nn的用法示例。


在下文中一共展示了nn.l2_loss方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: l2_regularizer

# 需要导入模块: from tensorflow.python.ops import nn [as 别名]
# 或者: from tensorflow.python.ops.nn import l2_loss [as 别名]
def l2_regularizer(scale, scope=None):
  """Returns a function that can be used to apply L2 regularization to weights.

  Small values of L2 can help prevent overfitting the training data.

  Args:
    scale: A scalar multiplier `Tensor`. 0.0 disables the regularizer.
    scope: An optional scope name.

  Returns:
    A function with signature `l2(weights)` that applies L2 regularization.

  Raises:
    ValueError: If scale is negative or if scale is not a float.
  """
  if isinstance(scale, numbers.Integral):
    raise ValueError('scale cannot be an integer: %s' % (scale,))
  if isinstance(scale, numbers.Real):
    if scale < 0.:
      raise ValueError('Setting a scale less than 0 on a regularizer: %g.' %
                       scale)
    if scale == 0.:
      logging.info('Scale of 0 disables regularizer.')
      return lambda _: None

  def l2(weights):
    """Applies l2 regularization to weights."""
    with ops.name_scope(scope, 'l2_regularizer', [weights]) as name:
      my_scale = ops.convert_to_tensor(scale,
                                       dtype=weights.dtype.base_dtype,
                                       name='scale')
      return standard_ops.multiply(my_scale, nn.l2_loss(weights), name=name)

  return l2 
开发者ID:taehoonlee,项目名称:tensornets,代码行数:36,代码来源:regularizers.py

示例2: l2_regularizer

# 需要导入模块: from tensorflow.python.ops import nn [as 别名]
# 或者: from tensorflow.python.ops.nn import l2_loss [as 别名]
def l2_regularizer(scale, scope=None):
  """Returns a function that can be used to apply L2 regularization to weights.

  Small values of L2 can help prevent overfitting the training data.

  Args:
    scale: A scalar multiplier `Tensor`. 0.0 disables the regularizer.
    scope: An optional scope name.

  Returns:
    A function with signature `l2(weights)` that applies L2 regularization.

  Raises:
    ValueError: If scale is negative or if scale is not a float.
  """
  if isinstance(scale, numbers.Integral):
    raise ValueError('scale cannot be an integer: %s' % (scale,))
  if isinstance(scale, numbers.Real):
    if scale < 0.:
      raise ValueError('Setting a scale less than 0 on a regularizer: %g.' %
                       scale)
    if scale == 0.:
      logging.info('Scale of 0 disables regularizer.')
      return lambda _: None

  def l2(weights):
    """Applies l2 regularization to weights."""
    with ops.name_scope(scope, 'l2_regularizer', [weights]) as name:
      my_scale = ops.convert_to_tensor(scale,
                                       dtype=weights.dtype.base_dtype,
                                       name='scale')
      return standard_ops.mul(my_scale, nn.l2_loss(weights), name=name)

  return l2 
开发者ID:tobegit3hub,项目名称:deep_image_model,代码行数:36,代码来源:regularizers.py

示例3: weight_l2_regularizer

# 需要导入模块: from tensorflow.python.ops import nn [as 别名]
# 或者: from tensorflow.python.ops.nn import l2_loss [as 别名]
def weight_l2_regularizer(initial_weights, scale, scope=None):
  """Returns a function that can be used to apply L2 regularization to weights.
  Small values of L2 can help prevent overfitting the training data.
  Args:
    scale: A scalar multiplier `Tensor`. 0.0 disables the regularizer.
    scope: An optional scope name.
  Returns:
    A function with signature `l2(weights)` that applies L2 regularization.
  Raises:
    ValueError: If scale is negative or if scale is not a float.
  """
  if isinstance(scale, numbers.Integral):
    raise ValueError('scale cannot be an integer: %s' % (scale,))
  if isinstance(scale, numbers.Real):
    if scale < 0.:
      raise ValueError('Setting a scale less than 0 on a regularizer: %g.' %
                       scale)
    if scale == 0.:
      logging.info('Scale of 0 disables regularizer.')
      return lambda _: None

  def l2(weights):
    """Applies l2 regularization to weights."""
    with ops.name_scope(scope, 'l2_regularizer', [weights]) as name:
      my_scale = ops.convert_to_tensor(scale,
                                       dtype=weights.dtype.base_dtype,
                                       name='scale')
      weight_diff = initial_weights - weights
      return standard_ops.multiply(my_scale, nn.l2_loss(weight_diff), name=name)

  return l2 
开发者ID:BryanPlummer,项目名称:cite,代码行数:33,代码来源:model.py


注:本文中的tensorflow.python.ops.nn.l2_loss方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。