当前位置: 首页>>代码示例>>Python>>正文


Python nn.depthwise_conv2d方法代码示例

本文整理汇总了Python中tensorflow.python.ops.nn.depthwise_conv2d方法的典型用法代码示例。如果您正苦于以下问题:Python nn.depthwise_conv2d方法的具体用法?Python nn.depthwise_conv2d怎么用?Python nn.depthwise_conv2d使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow.python.ops.nn的用法示例。


在下文中一共展示了nn.depthwise_conv2d方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: _ssim_per_channel

# 需要导入模块: from tensorflow.python.ops import nn [as 别名]
# 或者: from tensorflow.python.ops.nn import depthwise_conv2d [as 别名]
def _ssim_per_channel(img1, img2, max_val=1.0):
    filter_size = constant_op.constant(11, dtype=dtypes.int32)
    filter_sigma = constant_op.constant(1.5, dtype=img1.dtype)

    shape1, shape2 = array_ops.shape_n([img1, img2])
    checks = [
      control_flow_ops.Assert(math_ops.reduce_all(math_ops.greater_equal(
          shape1[-3:-1], filter_size)), [shape1, filter_size], summarize=8),
      control_flow_ops.Assert(math_ops.reduce_all(math_ops.greater_equal(
          shape2[-3:-1], filter_size)), [shape2, filter_size], summarize=8)]

    # Enforce the check to run before computation.
    with ops.control_dependencies(checks):
        img1 = array_ops.identity(img1)

    kernel = _fspecial_gauss(filter_size, filter_sigma)
    kernel = array_ops.tile(kernel, multiples=[1, 1, shape1[-1], 1])

    compensation = 1.0

    def reducer(x):
        shape = array_ops.shape(x)
        x = array_ops.reshape(x, shape=array_ops.concat([[-1], shape[-3:]], 0))
        y = nn.depthwise_conv2d(x, kernel, strides=[1, 1, 1, 1], padding='VALID')
        return array_ops.reshape(y, array_ops.concat([shape[:-3],
                                                      array_ops.shape(y)[1:]], 0))

    luminance, cs = _ssim_helper(img1, img2, reducer, max_val, compensation)

    # Average over the second and the third from the last: height, width.
    axes = constant_op.constant([-3, -2], dtype=dtypes.int32)
    ssim_val = math_ops.reduce_mean(luminance * cs, axes)
    cs = math_ops.reduce_mean(cs, axes)
    luminance = math_ops.reduce_mean(luminance, axes)
    return ssim_val, cs, luminance 
开发者ID:Ouwen,项目名称:MimickNet,代码行数:37,代码来源:custom_ssim.py

示例2: depthwise_conv2d

# 需要导入模块: from tensorflow.python.ops import nn [as 别名]
# 或者: from tensorflow.python.ops.nn import depthwise_conv2d [as 别名]
def depthwise_conv2d(x, depthwise_kernel, strides=(1, 1), padding='valid',
                     data_format=None, dilation_rate=(1, 1)):
  """2D convolution with separable filters.

  Arguments:
    x: input tensor
    depthwise_kernel: convolution kernel for the depthwise convolution.
    strides: strides tuple (length 2).
    padding: string, `"same"` or `"valid"`.
    data_format: string, `"channels_last"` or `"channels_first"`.
    dilation_rate: tuple of integers,
        dilation rates for the separable convolution.

  Returns:
    Output tensor.

  Raises:
    ValueError: if `data_format` is neither `channels_last`
      or `channels_first`.
  """
  if data_format is None:
    data_format = image_data_format()
  if data_format not in {'channels_first', 'channels_last'}:
    raise ValueError('Unknown data_format ' + str(data_format))

  x = _preprocess_conv2d_input(x, data_format)
  padding = _preprocess_padding(padding)
  strides = (1,) + strides + (1,)

  x = nn.depthwise_conv2d(x, depthwise_kernel,
                          strides=strides,
                          padding=padding,
                          rate=dilation_rate)
  return _postprocess_conv2d_output(x, data_format) 
开发者ID:PacktPublishing,项目名称:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代码行数:36,代码来源:backend.py


注:本文中的tensorflow.python.ops.nn.depthwise_conv2d方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。