本文整理汇总了Python中tensorflow.python.ops.nn.conv2d_transpose方法的典型用法代码示例。如果您正苦于以下问题:Python nn.conv2d_transpose方法的具体用法?Python nn.conv2d_transpose怎么用?Python nn.conv2d_transpose使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.python.ops.nn
的用法示例。
在下文中一共展示了nn.conv2d_transpose方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: call
# 需要导入模块: from tensorflow.python.ops import nn [as 别名]
# 或者: from tensorflow.python.ops.nn import conv2d_transpose [as 别名]
def call(self, inputs):
inputs_shape = array_ops.shape(inputs)
batch_size = inputs_shape[0]
if self.data_format == 'channels_first':
c_axis, h_axis, w_axis = 1, 2, 3
else:
c_axis, h_axis, w_axis = 3, 1, 2
height, width = inputs_shape[h_axis], inputs_shape[w_axis]
kernel_h, kernel_w = self.kernel_size
stride_h, stride_w = self.strides
# Infer the dynamic output shape:
out_height = utils.deconv_output_length(height,
kernel_h,
self.padding,
stride_h)
out_width = utils.deconv_output_length(width,
kernel_w,
self.padding,
stride_w)
if self.data_format == 'channels_first':
output_shape = (batch_size, self.filters, out_height, out_width)
strides = (1, 1, stride_h, stride_w)
else:
output_shape = (batch_size, out_height, out_width, self.filters)
strides = (1, stride_h, stride_w, 1)
output_shape_tensor = array_ops.stack(output_shape)
outputs = nn.conv2d_transpose(
inputs,
self.kernel,
output_shape_tensor,
strides,
padding=self.padding.upper(),
data_format=utils.convert_data_format(self.data_format, ndim=4))
# Infer the static output shape:
out_shape = inputs.get_shape().as_list()
out_shape[c_axis] = self.filters
out_shape[h_axis] = utils.deconv_output_length(out_shape[h_axis],
kernel_h,
self.padding,
stride_h)
out_shape[w_axis] = utils.deconv_output_length(out_shape[w_axis],
kernel_w,
self.padding,
stride_w)
outputs.set_shape(out_shape)
if self.bias:
outputs = nn.bias_add(
outputs,
self.bias,
data_format=utils.convert_data_format(self.data_format, ndim=4))
if self.activation is not None:
return self.activation(outputs)
return outputs
示例2: conv2d_transpose
# 需要导入模块: from tensorflow.python.ops import nn [as 别名]
# 或者: from tensorflow.python.ops.nn import conv2d_transpose [as 别名]
def conv2d_transpose(x,
kernel,
output_shape,
strides=(1, 1),
padding='valid',
data_format=None):
"""2D deconvolution (i.e.
transposed convolution).
Arguments:
x: Tensor or variable.
kernel: kernel tensor.
output_shape: 1D int tensor for the output shape.
strides: strides tuple.
padding: string, `"same"` or `"valid"`.
data_format: `"channels_last"` or `"channels_first"`.
Whether to use Theano or TensorFlow data format
for inputs/kernels/ouputs.
Returns:
A tensor, result of transposed 2D convolution.
Raises:
ValueError: if `data_format` is neither `channels_last` or
`channels_first`.
"""
if data_format is None:
data_format = image_data_format()
if data_format not in {'channels_first', 'channels_last'}:
raise ValueError('Unknown data_format ' + str(data_format))
if isinstance(output_shape, (tuple, list)):
output_shape = array_ops.stack(output_shape)
x = _preprocess_conv2d_input(x, data_format)
output_shape = _preprocess_deconv_output_shape(x, output_shape, data_format)
padding = _preprocess_padding(padding)
strides = (1,) + strides + (1,)
x = nn.conv2d_transpose(x, kernel, output_shape, strides, padding=padding)
x = _postprocess_conv2d_output(x, data_format)
return x
示例3: call
# 需要导入模块: from tensorflow.python.ops import nn [as 别名]
# 或者: from tensorflow.python.ops.nn import conv2d_transpose [as 别名]
def call(self, inputs):
inputs_shape = array_ops.shape(inputs)
batch_size = inputs_shape[0]
if self.data_format == 'channels_first':
c_axis, h_axis, w_axis = 1, 2, 3
else:
c_axis, h_axis, w_axis = 3, 1, 2
height, width = inputs_shape[h_axis], inputs_shape[w_axis]
kernel_h, kernel_w = self.kernel_size
stride_h, stride_w = self.strides
def get_deconv_dim(dim_size, stride_size, kernel_size, padding):
if isinstance(dim_size, ops.Tensor):
dim_size = math_ops.multiply(dim_size, stride_size)
elif dim_size is not None:
dim_size *= stride_size
if padding == 'valid' and dim_size is not None:
dim_size += max(kernel_size - stride_size, 0)
return dim_size
# Infer the dynamic output shape:
out_height = get_deconv_dim(height, stride_h, kernel_h, self.padding)
out_width = get_deconv_dim(width, stride_w, kernel_w, self.padding)
if self.data_format == 'channels_first':
output_shape = (batch_size, self.filters, out_height, out_width)
strides = (1, 1, stride_h, stride_w)
else:
output_shape = (batch_size, out_height, out_width, self.filters)
strides = (1, stride_h, stride_w, 1)
output_shape_tensor = array_ops.stack(output_shape)
outputs = nn.conv2d_transpose(
inputs,
self.kernel,
output_shape_tensor,
strides,
padding=self.padding.upper(),
data_format=utils.convert_data_format(self.data_format, ndim=4))
# Infer the static output shape:
out_shape = inputs.get_shape().as_list()
out_shape[c_axis] = self.filters
out_shape[h_axis] = get_deconv_dim(
out_shape[h_axis], stride_h, kernel_h, self.padding)
out_shape[w_axis] = get_deconv_dim(
out_shape[w_axis], stride_w, kernel_w, self.padding)
outputs.set_shape(out_shape)
if self.bias:
outputs = nn.bias_add(
outputs,
self.bias,
data_format=utils.convert_data_format(self.data_format, ndim=4))
if self.activation is not None:
return self.activation(outputs)
return outputs
示例4: conv2d_transpose
# 需要导入模块: from tensorflow.python.ops import nn [as 别名]
# 或者: from tensorflow.python.ops.nn import conv2d_transpose [as 别名]
def conv2d_transpose(x,
kernel,
output_shape,
strides=(1, 1),
padding='valid',
data_format=None):
"""2D deconvolution (i.e.
transposed convolution).
Arguments:
x: Tensor or variable.
kernel: kernel tensor.
output_shape: 1D int tensor for the output shape.
strides: strides tuple.
padding: string, `"same"` or `"valid"`.
data_format: `"channels_last"` or `"channels_first"`.
Whether to use Theano or TensorFlow data format
for inputs/kernels/outputs.
Returns:
A tensor, result of transposed 2D convolution.
Raises:
ValueError: if `data_format` is neither `channels_last` or
`channels_first`.
"""
if data_format is None:
data_format = image_data_format()
if data_format not in {'channels_first', 'channels_last'}:
raise ValueError('Unknown data_format ' + str(data_format))
if isinstance(output_shape, (tuple, list)):
output_shape = array_ops.stack(output_shape)
x = _preprocess_conv2d_input(x, data_format)
output_shape = _preprocess_deconv_output_shape(x, output_shape, data_format)
padding = _preprocess_padding(padding)
strides = (1,) + strides + (1,)
x = nn.conv2d_transpose(x, kernel, output_shape, strides, padding=padding)
x = _postprocess_conv2d_output(x, data_format)
return x
开发者ID:PacktPublishing,项目名称:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代码行数:44,代码来源:backend.py
示例5: call
# 需要导入模块: from tensorflow.python.ops import nn [as 别名]
# 或者: from tensorflow.python.ops.nn import conv2d_transpose [as 别名]
def call(self, inputs):
inputs_shape = array_ops.shape(inputs)
batch_size = inputs_shape[0]
if self.data_format == 'channels_first':
c_axis, h_axis, w_axis = 1, 2, 3
else:
c_axis, h_axis, w_axis = 3, 1, 2
height, width = inputs_shape[h_axis], inputs_shape[w_axis]
kernel_h, kernel_w = self.kernel_size
stride_h, stride_w = self.strides
# Infer the dynamic output shape:
out_height = utils.deconv_output_length(height,
kernel_h,
self.padding,
stride_h)
out_width = utils.deconv_output_length(width,
kernel_w,
self.padding,
stride_w)
if self.data_format == 'channels_first':
output_shape = (batch_size, self.filters, out_height, out_width)
strides = (1, 1, stride_h, stride_w)
else:
output_shape = (batch_size, out_height, out_width, self.filters)
strides = (1, stride_h, stride_w, 1)
output_shape_tensor = array_ops.stack(output_shape)
outputs = nn.conv2d_transpose(
inputs,
self.kernel,
output_shape_tensor,
strides,
padding=self.padding.upper(),
data_format=utils.convert_data_format(self.data_format, ndim=4))
if context.in_graph_mode():
# Infer the static output shape:
out_shape = inputs.get_shape().as_list()
out_shape[c_axis] = self.filters
out_shape[h_axis] = utils.deconv_output_length(out_shape[h_axis],
kernel_h,
self.padding,
stride_h)
out_shape[w_axis] = utils.deconv_output_length(out_shape[w_axis],
kernel_w,
self.padding,
stride_w)
outputs.set_shape(out_shape)
if self.use_bias:
outputs = nn.bias_add(
outputs,
self.bias,
data_format=utils.convert_data_format(self.data_format, ndim=4))
if self.activation is not None:
return self.activation(outputs)
return outputs
开发者ID:PacktPublishing,项目名称:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代码行数:62,代码来源:convolutional.py