本文整理汇总了Python中tensorflow.python.ops.math_ops.to_int64方法的典型用法代码示例。如果您正苦于以下问题:Python math_ops.to_int64方法的具体用法?Python math_ops.to_int64怎么用?Python math_ops.to_int64使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.python.ops.math_ops
的用法示例。
在下文中一共展示了math_ops.to_int64方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: set_global_step
# 需要导入模块: from tensorflow.python.ops import math_ops [as 别名]
# 或者: from tensorflow.python.ops.math_ops import to_int64 [as 别名]
def set_global_step(self, new_global_step, name=None):
"""Sets the global time step of the accumulator.
The operation logs a warning if we attempt to set to a time step that is
lower than the accumulator's own time step.
Args:
new_global_step: Value of new time step. Can be a variable or a constant
name: Optional name for the operation.
Returns:
Operation that sets the accumulator's time step.
"""
return gen_data_flow_ops.accumulator_set_global_step(
self._accumulator_ref,
math_ops.to_int64(ops.convert_to_tensor(new_global_step)),
name=name)
示例2: apply_grad
# 需要导入模块: from tensorflow.python.ops import math_ops [as 别名]
# 或者: from tensorflow.python.ops.math_ops import to_int64 [as 别名]
def apply_grad(self, grad, local_step=0, name=None):
"""Attempts to apply a gradient to the accumulator.
The attempt is silently dropped if the gradient is stale, i.e., local_step
is less than the accumulator's global time step.
Args:
grad: The gradient tensor to be applied.
local_step: Time step at which the gradient was computed.
name: Optional name for the operation.
Returns:
The operation that (conditionally) applies a gradient to the accumulator.
Raises:
ValueError: If grad is of the wrong shape
"""
grad = ops.convert_to_tensor(grad, self._dtype)
grad.get_shape().assert_is_compatible_with(self._shape)
local_step = math_ops.to_int64(ops.convert_to_tensor(local_step))
return gen_data_flow_ops.accumulator_apply_gradient(
self._accumulator_ref, local_step=local_step, gradient=grad, name=name)
示例3: assert_integer_form
# 需要导入模块: from tensorflow.python.ops import math_ops [as 别名]
# 或者: from tensorflow.python.ops.math_ops import to_int64 [as 别名]
def assert_integer_form(
x, data=None, summarize=None, message=None, name="assert_integer_form"):
"""Assert that x has integer components (or floats equal to integers).
Args:
x: Floating-point `Tensor`
data: The tensors to print out if the condition is `False`. Defaults to
error message and first few entries of `x` and `y`.
summarize: Print this many entries of each tensor.
message: A string to prefix to the default message.
name: A name for this operation (optional).
Returns:
Op raising `InvalidArgumentError` if round(x) != x.
"""
message = message or "x has non-integer components"
x = ops.convert_to_tensor(x, name="x")
casted_x = math_ops.to_int64(x)
return check_ops.assert_equal(
x, math_ops.cast(math_ops.round(casted_x), x.dtype),
data=data, summarize=summarize, message=message, name=name)
示例4: _transform_feature
# 需要导入模块: from tensorflow.python.ops import math_ops [as 别名]
# 或者: from tensorflow.python.ops.math_ops import to_int64 [as 别名]
def _transform_feature(self, inputs):
input_tensor = _to_sparse_input(inputs.get(self.key))
if self.dtype.is_integer != input_tensor.dtype.is_integer:
raise ValueError(
'Column dtype and SparseTensors dtype must be compatible. '
'key: {}, column dtype: {}, tensor dtype: {}'.format(
self.key, self.dtype, input_tensor.dtype))
_assert_string_or_int(
input_tensor.dtype,
prefix='column_name: {} input_tensor'.format(self.key))
key_dtype = self.dtype
if input_tensor.dtype.is_integer:
# `index_table_from_tensor` requires 64-bit integer keys.
key_dtype = dtypes.int64
input_tensor = math_ops.to_int64(input_tensor)
return lookup_ops.index_table_from_tensor(
vocabulary_list=tuple(self.vocabulary_list),
default_value=self.default_value,
dtype=key_dtype,
name='{}_lookup'.format(self.key)).lookup(input_tensor)
示例5: tensors_to_item
# 需要导入模块: from tensorflow.python.ops import math_ops [as 别名]
# 或者: from tensorflow.python.ops.math_ops import to_int64 [as 别名]
def tensors_to_item(self, keys_to_tensors):
indices = keys_to_tensors[self._indices_key]
values = keys_to_tensors[self._values_key]
if self._shape_key:
shape = keys_to_tensors[self._shape_key]
if isinstance(shape, sparse_tensor.SparseTensor):
shape = sparse_ops.sparse_tensor_to_dense(shape)
elif self._shape:
shape = self._shape
else:
shape = indices.dense_shape
indices_shape = array_ops.shape(indices.indices)
rank = indices_shape[1]
ids = math_ops.to_int64(indices.values)
indices_columns_to_preserve = array_ops.slice(
indices.indices, [0, 0], array_ops.stack([-1, rank - 1]))
new_indices = array_ops.concat(
[indices_columns_to_preserve, array_ops.reshape(ids, [-1, 1])], 1)
tensor = sparse_tensor.SparseTensor(new_indices, values.values, shape)
if self._densify:
tensor = sparse_ops.sparse_tensor_to_dense(tensor, self._default_value)
return tensor
示例6: _lengths_to_masks
# 需要导入模块: from tensorflow.python.ops import math_ops [as 别名]
# 或者: from tensorflow.python.ops.math_ops import to_int64 [as 别名]
def _lengths_to_masks(lengths, max_length):
"""Creates a binary matrix that can be used to mask away padding.
Args:
lengths: A vector of integers representing lengths.
max_length: An integer indicating the maximum length. All values in
lengths should be less than max_length.
Returns:
masks: Masks that can be used to get rid of padding.
"""
tiled_ranges = array_ops.tile(
array_ops.expand_dims(math_ops.range(max_length), 0),
[array_ops.shape(lengths)[0], 1])
lengths = array_ops.expand_dims(lengths, 1)
masks = math_ops.to_float(
math_ops.to_int64(tiled_ranges) < math_ops.to_int64(lengths))
return masks
示例7: assert_integer_form
# 需要导入模块: from tensorflow.python.ops import math_ops [as 别名]
# 或者: from tensorflow.python.ops.math_ops import to_int64 [as 别名]
def assert_integer_form(
x, data=None, summarize=None, message=None, name="assert_integer_form"):
"""Assert that x has integer components (or floats equal to integers).
Args:
x: Numeric `Tensor`
data: The tensors to print out if the condition is `False`. Defaults to
error message and first few entries of `x` and `y`.
summarize: Print this many entries of each tensor.
message: A string to prefix to the default message.
name: A name for this operation (optional).
Returns:
Op raising `InvalidArgumentError` if round(x) != x.
"""
message = message or "x has non-integer components"
x = ops.convert_to_tensor(x, name="x")
casted_x = math_ops.to_int64(x)
return check_ops.assert_equal(
x, math_ops.cast(math_ops.round(casted_x), x.dtype),
data=data, summarize=summarize, message=message, name=name)
示例8: _lengths_to_masks
# 需要导入模块: from tensorflow.python.ops import math_ops [as 别名]
# 或者: from tensorflow.python.ops.math_ops import to_int64 [as 别名]
def _lengths_to_masks(lengths, max_length):
"""Creates a binary matrix that can be used to mask away padding.
Args:
lengths: A vector of integers representing lengths.
max_length: An integer indicating the maximum length. All values in
lengths should be less than max_length.
Returns:
masks: Masks that can be used to get rid of padding.
"""
tiled_ranges = array_ops.tile(
array_ops.expand_dims(math_ops.range(max_length), 0),
[array_ops.shape(lengths)[0], 1])
lengths = array_ops.expand_dims(lengths, 1)
masks = math_ops.to_float(
math_ops.to_int64(tiled_ranges) < math_ops.to_int64(lengths))
return masks
# 计算标签序列的非正则化得分
示例9: tensors_to_item
# 需要导入模块: from tensorflow.python.ops import math_ops [as 别名]
# 或者: from tensorflow.python.ops.math_ops import to_int64 [as 别名]
def tensors_to_item(self, keys_to_tensors):
"""Maps the given dictionary of tensors to a concatenated list of bboxes.
Args:
keys_to_tensors: a mapping of TF-Example keys to parsed tensors.
Returns:
[time, num_boxes, 4] tensor of bounding box coordinates, in order
[y_min, x_min, y_max, x_max]. Whether the tensor is a SparseTensor
or a dense Tensor is determined by the return_dense parameter. Empty
positions in the sparse tensor are filled with -1.0 values.
"""
sides = []
for key in self._full_keys:
value = keys_to_tensors[key]
expanded_dims = array_ops.concat(
[math_ops.to_int64(array_ops.shape(value)),
constant_op.constant([1], dtype=dtypes.int64)], 0)
side = sparse_ops.sparse_reshape(value, expanded_dims)
sides.append(side)
bounding_boxes = sparse_ops.sparse_concat(2, sides)
if self._return_dense:
bounding_boxes = sparse_ops.sparse_tensor_to_dense(
bounding_boxes, default_value=self._default_value)
return bounding_boxes
示例10: tensors_to_item
# 需要导入模块: from tensorflow.python.ops import math_ops [as 别名]
# 或者: from tensorflow.python.ops.math_ops import to_int64 [as 别名]
def tensors_to_item(self, keys_to_tensors):
indices = keys_to_tensors[self._indices_key]
values = keys_to_tensors[self._values_key]
if self._shape_key:
shape = keys_to_tensors[self._shape_key]
if isinstance(shape, sparse_tensor.SparseTensor):
shape = sparse_ops.sparse_tensor_to_dense(shape)
elif self._shape:
shape = self._shape
else:
shape = indices.shape
indices_shape = array_ops.shape(indices.indices)
rank = indices_shape[1]
ids = math_ops.to_int64(indices.values)
indices_columns_to_preserve = array_ops.slice(
indices.indices, [0, 0], array_ops.pack([-1, rank - 1]))
new_indices = array_ops.concat(1, [indices_columns_to_preserve,
array_ops.reshape(ids, [-1, 1])])
tensor = sparse_tensor.SparseTensor(new_indices, values.values, shape)
if self._densify:
tensor = sparse_ops.sparse_tensor_to_dense(tensor, self._default_value)
return tensor
示例11: _lengths_to_masks
# 需要导入模块: from tensorflow.python.ops import math_ops [as 别名]
# 或者: from tensorflow.python.ops.math_ops import to_int64 [as 别名]
def _lengths_to_masks(lengths, max_length):
"""Creates a binary matrix that can be used to mask away padding.
Args:
lengths: A vector of integers representing lengths.
max_length: An integer indicating the maximum length. All values in
lengths should be less than max_length.
Returns:
masks: Masks that can be used to get rid of padding.
"""
tiled_ranges = array_ops.tile(
array_ops.expand_dims(math_ops.range(max_length), 0),
[array_ops.shape(lengths)[0], 1])
lengths = array_ops.expand_dims(lengths, 1)
masks = math_ops.to_float(
math_ops.to_int64(tiled_ranges) < math_ops.to_int64(lengths))
return masks
示例12: _get_eval_ops
# 需要导入模块: from tensorflow.python.ops import math_ops [as 别名]
# 或者: from tensorflow.python.ops.math_ops import to_int64 [as 别名]
def _get_eval_ops(self, features, targets, metrics):
features, spec = data_ops.ParseDataTensorOrDict(features)
labels = data_ops.ParseLabelTensorOrDict(targets)
graph_builder = self.graph_builder_class(
self.params, device_assigner=self.device_assigner, training=False,
**self.construction_args)
probabilities = graph_builder.inference_graph(features, data_spec=spec)
# One-hot the labels.
if not self.params.regression:
labels = math_ops.to_int64(array_ops.one_hot(math_ops.to_int64(
array_ops.squeeze(labels)), self.params.num_classes, 1, 0))
if metrics is None:
metrics = {self.accuracy_metric:
eval_metrics.get_metric(self.accuracy_metric)}
result = {}
for name, metric in six.iteritems(metrics):
result[name] = metric(probabilities, labels)
return result
示例13: _transform_feature
# 需要导入模块: from tensorflow.python.ops import math_ops [as 别名]
# 或者: from tensorflow.python.ops.math_ops import to_int64 [as 别名]
def _transform_feature(self, inputs):
input_tensor = _to_sparse_input(inputs.get(self.key))
if self.dtype.is_integer != input_tensor.dtype.is_integer:
raise ValueError(
'Column dtype and SparseTensors dtype must be compatible. '
'key: {}, column dtype: {}, tensor dtype: {}'.format(
self.key, self.dtype, input_tensor.dtype))
_assert_string_or_int(
input_tensor.dtype,
prefix='column_name: {} input_tensor'.format(self.key))
key_dtype = self.dtype
if input_tensor.dtype.is_integer:
# `index_table_from_tensor` requires 64-bit integer keys.
key_dtype = dtypes.int64
input_tensor = math_ops.to_int64(input_tensor)
return lookup_ops.index_table_from_tensor(
vocabulary_list=tuple(self.vocabulary_list),
default_value=self.default_value,
num_oov_buckets=self.num_oov_buckets,
dtype=key_dtype,
name='{}_lookup'.format(self.key)).lookup(input_tensor)
开发者ID:PacktPublishing,项目名称:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代码行数:27,代码来源:feature_column.py
示例14: _SparseReduceSumGrad
# 需要导入模块: from tensorflow.python.ops import math_ops [as 别名]
# 或者: from tensorflow.python.ops.math_ops import to_int64 [as 别名]
def _SparseReduceSumGrad(op, out_grad):
"""Similar to gradient for the Sum Op (i.e. tf.reduce_sum())."""
sp_indices = op.inputs[0]
sp_shape = op.inputs[2]
output_shape_kept_dims = math_ops.reduced_shape(sp_shape, op.inputs[3])
out_grad_reshaped = array_ops.reshape(out_grad, output_shape_kept_dims)
scale = sp_shape // math_ops.to_int64(output_shape_kept_dims)
# (sparse_indices, sparse_values, sparse_shape, reduction_axes)
return (None, array_ops.gather_nd(out_grad_reshaped, sp_indices // scale),
None, None)
示例15: _SparseDenseCwiseMulOrDivGrad
# 需要导入模块: from tensorflow.python.ops import math_ops [as 别名]
# 或者: from tensorflow.python.ops.math_ops import to_int64 [as 别名]
def _SparseDenseCwiseMulOrDivGrad(op, grad, is_mul):
"""Common code for SparseDenseCwise{Mul,Div} gradients."""
x_indices = op.inputs[0]
x_shape = op.inputs[2]
y = op.inputs[3]
y_shape = math_ops.to_int64(array_ops.shape(y))
num_added_dims = array_ops.expand_dims(
array_ops.size(x_shape) - array_ops.size(y_shape), 0)
augmented_y_shape = array_ops.concat(
[array_ops.ones(num_added_dims, ops.dtypes.int64), y_shape], 0)
scaling = x_shape // augmented_y_shape
scaled_indices = x_indices // scaling
scaled_indices = array_ops.slice(scaled_indices,
array_ops.concat([[0], num_added_dims], 0),
[-1, -1])
dense_vals = array_ops.gather_nd(y, scaled_indices)
if is_mul:
dx = grad * dense_vals
dy_val = grad * op.inputs[1]
else:
dx = grad / dense_vals
dy_val = grad * (-op.inputs[1] / math_ops.square(dense_vals))
# indices can repeat after scaling, so we can't use sparse_to_dense().
dy = sparse_ops.sparse_add(
array_ops.zeros_like(y),
sparse_tensor.SparseTensor(scaled_indices, dy_val, y_shape))
# (sp_indices, sp_vals, sp_shape, dense)
return (None, dx, None, dy)