当前位置: 首页>>代码示例>>Python>>正文


Python math_ops.scalar_mul方法代码示例

本文整理汇总了Python中tensorflow.python.ops.math_ops.scalar_mul方法的典型用法代码示例。如果您正苦于以下问题:Python math_ops.scalar_mul方法的具体用法?Python math_ops.scalar_mul怎么用?Python math_ops.scalar_mul使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow.python.ops.math_ops的用法示例。


在下文中一共展示了math_ops.scalar_mul方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: _SquaredDifferenceGrad

# 需要导入模块: from tensorflow.python.ops import math_ops [as 别名]
# 或者: from tensorflow.python.ops.math_ops import scalar_mul [as 别名]
def _SquaredDifferenceGrad(op, grad):
  """Returns the gradient for (x-y)^2."""
  x = op.inputs[0]
  y = op.inputs[1]
  sx = array_ops.shape(x)
  sy = array_ops.shape(y)
  # pylint: disable=protected-access
  rx, ry = gen_array_ops._broadcast_gradient_args(sx, sy)
  # pylint: enable=protected-access
  # .op works with Tensors or IndexedSlices
  with ops.control_dependencies([grad.op]):
    # The parens ensure that if grad is IndexedSlices, it'll get multiplied by
    # Tensor (not a number like 2.0) which causes it to convert to Tensor.
    x_grad = math_ops.scalar_mul(2.0, grad) * (x - y)
  return (array_ops.reshape(math_ops.reduce_sum(x_grad, rx), sx),
          -array_ops.reshape(math_ops.reduce_sum(x_grad, ry), sy))


# Logical operations have no gradients. 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:21,代码来源:math_grad.py

示例2: _SquaredDifferenceGrad

# 需要导入模块: from tensorflow.python.ops import math_ops [as 别名]
# 或者: from tensorflow.python.ops.math_ops import scalar_mul [as 别名]
def _SquaredDifferenceGrad(op, grad):
  """Returns the gradient for (x-y)^2."""
  x = op.inputs[0]
  y = op.inputs[1]
  sx = array_ops.shape(x)
  sy = array_ops.shape(y)
  # pylint: disable=protected-access
  rx, ry = gen_array_ops._broadcast_gradient_args(sx, sy)
  # pylint: enable=protected-access
  with ops.control_dependencies([grad]):
    # The parens ensure that if grad is IndexedSlices, it'll get multiplied by
    # Tensor (not a number like 2.0) which causes it to convert to Tensor.
    x_grad = math_ops.scalar_mul(2.0, grad) * (x - y)
  return (array_ops.reshape(math_ops.reduce_sum(x_grad, rx), sx),
          -array_ops.reshape(math_ops.reduce_sum(x_grad, ry), sy))


# Logical operations have no gradients. 
开发者ID:PacktPublishing,项目名称:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代码行数:20,代码来源:math_grad.py

示例3: testAcceptsRefs

# 需要导入模块: from tensorflow.python.ops import math_ops [as 别名]
# 或者: from tensorflow.python.ops.math_ops import scalar_mul [as 别名]
def testAcceptsRefs(self):
    var = variables.Variable(10)
    result = math_ops.scalar_mul(3, var)
    init = variables.global_variables_initializer()
    with self.test_session(use_gpu=True) as sess:
      sess.run(init)
      self.assertEqual(30, result.eval()) 
开发者ID:tobegit3hub,项目名称:deep_image_model,代码行数:9,代码来源:math_ops_test.py

示例4: testAcceptsConstant

# 需要导入模块: from tensorflow.python.ops import math_ops [as 别名]
# 或者: from tensorflow.python.ops.math_ops import scalar_mul [as 别名]
def testAcceptsConstant(self):
    const = constant_op.constant(10)
    result = math_ops.scalar_mul(3, const)
    with self.test_session(use_gpu=True):
      self.assertEqual(30, result.eval()) 
开发者ID:tobegit3hub,项目名称:deep_image_model,代码行数:7,代码来源:math_ops_test.py

示例5: testAcceptsTensor

# 需要导入模块: from tensorflow.python.ops import math_ops [as 别名]
# 或者: from tensorflow.python.ops.math_ops import scalar_mul [as 别名]
def testAcceptsTensor(self):
    tensor = array_ops.ones([10, 10])
    result = math_ops.scalar_mul(3, tensor)
    expected = array_ops.ones([10, 10]) * 3

    with self.test_session(use_gpu=True):
      self.assertAllEqual(expected.eval(), result.eval()) 
开发者ID:tobegit3hub,项目名称:deep_image_model,代码行数:9,代码来源:math_ops_test.py

示例6: testAcceptsIndexedSlices

# 需要导入模块: from tensorflow.python.ops import math_ops [as 别名]
# 或者: from tensorflow.python.ops.math_ops import scalar_mul [as 别名]
def testAcceptsIndexedSlices(self):
    values = constant_op.constant([2, 3, 5, 7, 0, -1], shape=[3, 2])
    indices = constant_op.constant([0, 2, 5])
    x = math_ops.scalar_mul(-3, ops.IndexedSlices(values, indices))
    with self.test_session(use_gpu=True):
      self.assertAllEqual(x.values.eval(), [[-6, -9], [-15, -21], [0, 3]])
      self.assertAllEqual(x.indices.eval(), [0, 2, 5]) 
开发者ID:tobegit3hub,项目名称:deep_image_model,代码行数:9,代码来源:math_ops_test.py

示例7: clip_norm

# 需要导入模块: from tensorflow.python.ops import math_ops [as 别名]
# 或者: from tensorflow.python.ops.math_ops import scalar_mul [as 别名]
def clip_norm(g, c, n):
  """Clip a tensor by norm.

  Arguments:
    g: gradient tensor to clip.
    c: clipping threshold.
    n: norm of gradient tensor.

  Returns:
    Clipped gradient tensor.
  """
  if c > 0:
    condition = n >= c
    then_expression = lambda: math_ops.scalar_mul(c / n, g)
    else_expression = lambda: g

    # saving the shape to avoid converting sparse tensor to dense
    if isinstance(g, ops.Tensor):
      g_shape = copy.copy(g.get_shape())
    elif isinstance(g, ops.IndexedSlices):
      g_shape = copy.copy(g.dense_shape)
    if condition.dtype != dtypes_module.bool:
      condition = math_ops.cast(condition, 'bool')
    g = control_flow_ops.cond(condition, then_expression, else_expression)
    if isinstance(g, ops.Tensor):
      g.set_shape(g_shape)
    elif isinstance(g, ops.IndexedSlices):
      g._dense_shape = g_shape  # pylint: disable=protected-access
  return g 
开发者ID:PacktPublishing,项目名称:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代码行数:31,代码来源:optimizers.py


注:本文中的tensorflow.python.ops.math_ops.scalar_mul方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。