当前位置: 首页>>代码示例>>Python>>正文


Python math_ops.mod方法代码示例

本文整理汇总了Python中tensorflow.python.ops.math_ops.mod方法的典型用法代码示例。如果您正苦于以下问题:Python math_ops.mod方法的具体用法?Python math_ops.mod怎么用?Python math_ops.mod使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow.python.ops.math_ops的用法示例。


在下文中一共展示了math_ops.mod方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: rot90

# 需要导入模块: from tensorflow.python.ops import math_ops [as 别名]
# 或者: from tensorflow.python.ops.math_ops import mod [as 别名]
def rot90(image, k=1, name=None):
  """Rotate an image counter-clockwise by 90 degrees.

  Args:
    image: A 3-D tensor of shape `[height, width, channels]`.
    k: A scalar integer. The number of times the image is rotated by 90 degrees.
    name: A name for this operation (optional).

  Returns:
    A rotated 3-D tensor of the same type and shape as `image`.
  """
  with ops.name_scope(name, 'rot90', [image, k]) as scope:
    image = ops.convert_to_tensor(image, name='image')
    image = control_flow_ops.with_dependencies(
        _Check3DImage(image, require_static=False), image)
    k = ops.convert_to_tensor(k, dtype=dtypes.int32, name='k')
    k.get_shape().assert_has_rank(0)
    k = math_ops.mod(k, 4)

    def _rot90():
      return array_ops.transpose(array_ops.reverse_v2(image, [1]),
                                 [1, 0, 2])
    def _rot180():
      return array_ops.reverse_v2(image, [0, 1])
    def _rot270():
      return array_ops.reverse_v2(array_ops.transpose(image, [1, 0, 2]),
                                  [1])
    cases = [(math_ops.equal(k, 1), _rot90),
             (math_ops.equal(k, 2), _rot180),
             (math_ops.equal(k, 3), _rot270)]

    ret = control_flow_ops.case(cases, default=lambda: image, exclusive=True,
                                name=scope)
    ret.set_shape([None, None, image.get_shape()[2]])
    return ret 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:37,代码来源:image_ops_impl.py

示例2: _IRFFTGradHelper

# 需要导入模块: from tensorflow.python.ops import math_ops [as 别名]
# 或者: from tensorflow.python.ops.math_ops import mod [as 别名]
def _IRFFTGradHelper(rank, rfft_fn):
  """Returns a gradient function for an IRFFT of the provided rank."""
  # Can't happen because we don't register a gradient for IRFFT3D.
  assert rank in (1, 2), "Gradient for IRFFT3D is not implemented."

  def _Grad(op, grad):
    """A gradient function for IRFFT with the provided `rank` and `rfft_fn`."""
    # Generate a simple mask like [1.0, 2.0, ..., 2.0, 1.0] for even-length FFTs
    # and [1.0, 2.0, ..., 2.0] for odd-length FFTs. To reduce extra ops in the
    # graph we special-case the situation where the FFT length and last
    # dimension of the input are known at graph construction time.
    fft_length = op.inputs[1]
    is_odd = math_ops.mod(fft_length[-1], 2)
    input_last_dimension = array_ops.shape(op.inputs[0])[-1]
    mask = array_ops.concat(
        [[1.0], 2.0 * array_ops.ones([input_last_dimension - 2 + is_odd]),
         array_ops.ones([1 - is_odd])], 0)

    rsize = math_ops.reciprocal(math_ops.to_float(_FFTSizeForGrad(grad, rank)))

    # The gradient of IRFFT is the RFFT of the incoming gradient times a scaling
    # factor and a mask. The mask scales the gradient for the Hermitian
    # symmetric components of the RFFT by a factor of two, since these
    # components are de-duplicated in the RFFT.
    rfft = rfft_fn(grad, fft_length)
    return rfft * math_ops.cast(rsize * mask, dtypes.complex64), None

  return _Grad 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:30,代码来源:spectral_grad.py

示例3: _mod

# 需要导入模块: from tensorflow.python.ops import math_ops [as 别名]
# 或者: from tensorflow.python.ops.math_ops import mod [as 别名]
def _mod(self, x, y):
    """Modulo function that propagates x gradients."""
    return array_ops.stop_gradient(math_ops.mod(x, y) - x) + x 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:5,代码来源:rnn_cell.py

示例4: _shard_indices

# 需要导入模块: from tensorflow.python.ops import math_ops [as 别名]
# 或者: from tensorflow.python.ops.math_ops import mod [as 别名]
def _shard_indices(self, keys):
    key_shape = keys.get_shape()
    if key_shape.ndims > 1:
      # If keys are a matrix (i.e. a single key is a vector), we use the first
      # element of each key vector to determine the shard.
      keys = array_ops.slice(keys, [0, 0], [key_shape[0].value, 1])
      keys = array_ops.reshape(keys, [-1])
    indices = math_ops.mod(math_ops.abs(keys), self._num_shards)
    return math_ops.cast(indices, dtypes.int32) 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:11,代码来源:sharded_mutable_dense_hashtable.py

示例5: _do_transform

# 需要导入模块: from tensorflow.python.ops import math_ops [as 别名]
# 或者: from tensorflow.python.ops.math_ops import mod [as 别名]
def _do_transform(self, input_tensor):
    sparse_id_values = math_ops.mod(input_tensor.values, self.bucket_size,
                                    name="mod")
    return sparse_tensor_py.SparseTensor(input_tensor.indices, sparse_id_values,
                                         input_tensor.dense_shape) 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:7,代码来源:feature_column.py

示例6: __mod__

# 需要导入模块: from tensorflow.python.ops import math_ops [as 别名]
# 或者: from tensorflow.python.ops.math_ops import mod [as 别名]
def __mod__(self, other):
    return mod(self, other) 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:4,代码来源:core.py

示例7: __rmod__

# 需要导入模块: from tensorflow.python.ops import math_ops [as 别名]
# 或者: from tensorflow.python.ops.math_ops import mod [as 别名]
def __rmod__(self, other):
    return mod(other, self) 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:4,代码来源:core.py

示例8: rot90

# 需要导入模块: from tensorflow.python.ops import math_ops [as 别名]
# 或者: from tensorflow.python.ops.math_ops import mod [as 别名]
def rot90(image, k=1, name=None):
  """Rotate an image counter-clockwise by 90 degrees.

  Args:
    image: A 3-D tensor of shape `[height, width, channels]`.
    k: A scalar integer. The number of times the image is rotated by 90 degrees.
    name: A name for this operation (optional).

  Returns:
    A rotated 3-D tensor of the same type and shape as `image`.
  """
  with ops.name_scope(name, 'rot90', [image, k]) as scope:
    image = ops.convert_to_tensor(image, name='image')
    _Check3DImage(image, require_static=False)
    k = ops.convert_to_tensor(k, dtype=dtypes.int32, name='k')
    k.get_shape().assert_has_rank(0)
    k = math_ops.mod(k, 4)

    def _rot90():
      return array_ops.transpose(array_ops.reverse_v2(image, [1]),
                                 [1, 0, 2])
    def _rot180():
      return array_ops.reverse_v2(image, [0, 1])
    def _rot270():
      return array_ops.reverse_v2(array_ops.transpose(image, [1, 0, 2]),
                                  [1])
    cases = [(math_ops.equal(k, 1), _rot90),
             (math_ops.equal(k, 2), _rot180),
             (math_ops.equal(k, 3), _rot270)]

    ret = control_flow_ops.case(cases, default=lambda: image, exclusive=True,
                                name=scope)
    ret.set_shape([None, None, image.get_shape()[2]])
    return ret 
开发者ID:abhisuri97,项目名称:auto-alt-text-lambda-api,代码行数:36,代码来源:image_ops_impl.py

示例9: insert_transformed_feature

# 需要导入模块: from tensorflow.python.ops import math_ops [as 别名]
# 或者: from tensorflow.python.ops.math_ops import mod [as 别名]
def insert_transformed_feature(self, columns_to_tensors):
    """Handles sparse column to id conversion."""
    input_tensor = self._get_input_sparse_tensor(columns_to_tensors)

    sparse_id_values = math_ops.mod(input_tensor.values, self.bucket_size,
                                    name="mod")
    columns_to_tensors[self] = sparse_tensor_py.SparseTensor(
        input_tensor.indices, sparse_id_values, input_tensor.dense_shape) 
开发者ID:abhisuri97,项目名称:auto-alt-text-lambda-api,代码行数:10,代码来源:feature_column.py

示例10: setUp

# 需要导入模块: from tensorflow.python.ops import math_ops [as 别名]
# 或者: from tensorflow.python.ops.math_ops import mod [as 别名]
def setUp(self):
    super(CoreBinaryOpsTest, self).setUp()

    self.x_probs_broadcast_tensor = array_ops.reshape(
        self.x_probs_lt.tensor, [self.x_size, 1, self.probs_size])

    self.channel_probs_broadcast_tensor = array_ops.reshape(
        self.channel_probs_lt.tensor, [1, self.channel_size, self.probs_size])

    # == and != are not element-wise for tf.Tensor, so they shouldn't be
    # elementwise for LabeledTensor, either.
    self.ops = [
        ('add', operator.add, math_ops.add, core.add),
        ('sub', operator.sub, math_ops.subtract, core.sub),
        ('mul', operator.mul, math_ops.multiply, core.mul),
        ('div', operator.truediv, math_ops.div, core.div),
        ('mod', operator.mod, math_ops.mod, core.mod),
        ('pow', operator.pow, math_ops.pow, core.pow_function),
        ('equal', None, math_ops.equal, core.equal),
        ('less', operator.lt, math_ops.less, core.less),
        ('less_equal', operator.le, math_ops.less_equal, core.less_equal),
        ('not_equal', None, math_ops.not_equal, core.not_equal),
        ('greater', operator.gt, math_ops.greater, core.greater),
        ('greater_equal', operator.ge, math_ops.greater_equal,
         core.greater_equal),
    ]
    self.test_lt_1 = self.x_probs_lt
    self.test_lt_2 = self.channel_probs_lt
    self.test_lt_1_broadcast = self.x_probs_broadcast_tensor
    self.test_lt_2_broadcast = self.channel_probs_broadcast_tensor
    self.broadcast_axes = [self.a0, self.a1, self.a3] 
开发者ID:abhisuri97,项目名称:auto-alt-text-lambda-api,代码行数:33,代码来源:core_test.py

示例11: testFloat

# 需要导入模块: from tensorflow.python.ops import math_ops [as 别名]
# 或者: from tensorflow.python.ops.math_ops import mod [as 别名]
def testFloat(self):
    x = [0.5, 0.7, 0.3]
    for dtype in [np.float32, np.double]:
      # Test scalar and vector versions.
      for denom in [x[0], [x[0]] * 3]:
        x_np = np.array(x, dtype=dtype)
        with self.test_session(use_gpu=True):
          x_tf = constant_op.constant(x_np, shape=x_np.shape)
          y_tf = math_ops.mod(x_tf, denom)
          y_tf_np = y_tf.eval()
          y_np = np.fmod(x_np, denom)
        self.assertAllClose(y_tf_np, y_np, atol=1e-2) 
开发者ID:tobegit3hub,项目名称:deep_image_model,代码行数:14,代码来源:math_ops_test.py

示例12: testFixed

# 需要导入模块: from tensorflow.python.ops import math_ops [as 别名]
# 或者: from tensorflow.python.ops.math_ops import mod [as 别名]
def testFixed(self):
    x = [5, 10, 23]
    for dtype in [np.int32, np.int64]:
      # Test scalar and vector versions.
      for denom in [x[0], x]:
        x_np = np.array(x, dtype=dtype)
        with self.test_session(use_gpu=True):
          x_tf = constant_op.constant(x_np, shape=x_np.shape)
          y_tf = math_ops.mod(x_tf, denom)
          y_tf_np = y_tf.eval()
          y_np = np.mod(x_np, denom)
        self.assertAllClose(y_tf_np, y_np) 
开发者ID:tobegit3hub,项目名称:deep_image_model,代码行数:14,代码来源:math_ops_test.py

示例13: rot90

# 需要导入模块: from tensorflow.python.ops import math_ops [as 别名]
# 或者: from tensorflow.python.ops.math_ops import mod [as 别名]
def rot90(image, k=1, name=None):
  """Rotate an image counter-clockwise by 90 degrees.

  Args:
    image: A 3-D tensor of shape `[height, width, channels]`.
    k: A scalar integer. The number of times the image is rotated by 90 degrees.
    name: A name for this operation (optional).

  Returns:
    A rotated 3-D tensor of the same type and shape as `image`.
  """
  with ops.name_scope(name, 'rot90', [image, k]) as scope:
    image = ops.convert_to_tensor(image, name='image')
    _Check3DImage(image, require_static=False)
    k = ops.convert_to_tensor(k, dtype=dtypes.int32, name='k')
    k.get_shape().assert_has_rank(0)
    k = math_ops.mod(k, 4)

    def _rot90():
      return array_ops.transpose(array_ops.reverse(image, [False, True, False]),
                                 [1, 0, 2])
    def _rot180():
      return array_ops.reverse(image, [True, True, False])
    def _rot270():
      return array_ops.reverse(array_ops.transpose(image, [1, 0, 2]),
                               [False, True, False])
    cases = [(math_ops.equal(k, 1), _rot90),
             (math_ops.equal(k, 2), _rot180),
             (math_ops.equal(k, 3), _rot270)]

    ret = control_flow_ops.case(cases, default=lambda: image, exclusive=True,
                                name=scope)
    ret.set_shape([None, None, image.get_shape()[2]])
    return ret 
开发者ID:tobegit3hub,项目名称:deep_image_model,代码行数:36,代码来源:image_ops.py

示例14: adjust_hue

# 需要导入模块: from tensorflow.python.ops import math_ops [as 别名]
# 或者: from tensorflow.python.ops.math_ops import mod [as 别名]
def adjust_hue(image, delta, name=None):
  """Adjust hue of an RGB image.

  This is a convenience method that converts an RGB image to float
  representation, converts it to HSV, add an offset to the hue channel, converts
  back to RGB and then back to the original data type. If several adjustments
  are chained it is advisable to minimize the number of redundant conversions.

  `image` is an RGB image.  The image hue is adjusted by converting the
  image to HSV and rotating the hue channel (H) by
  `delta`.  The image is then converted back to RGB.

  `delta` must be in the interval `[-1, 1]`.

  Args:
    image: RGB image or images. Size of the last dimension must be 3.
    delta: float.  How much to add to the hue channel.
    name: A name for this operation (optional).

  Returns:
    Adjusted image(s), same shape and DType as `image`.
  """
  with ops.name_scope(name, 'adjust_hue', [image]) as name:
    image = ops.convert_to_tensor(image, name='image')
    # Remember original dtype to so we can convert back if needed
    orig_dtype = image.dtype
    flt_image = convert_image_dtype(image, dtypes.float32)

    # TODO(zhengxq): we will switch to the fused version after we add a GPU
    # kernel for that.
    fused = os.environ.get('TF_ADJUST_HUE_FUSED', '')
    fused = fused.lower() in ('true', 't', '1')

    if not fused:
      hsv = gen_image_ops.rgb_to_hsv(flt_image)

      hue = array_ops.slice(hsv, [0, 0, 0], [-1, -1, 1])
      saturation = array_ops.slice(hsv, [0, 0, 1], [-1, -1, 1])
      value = array_ops.slice(hsv, [0, 0, 2], [-1, -1, 1])

      # Note that we add 2*pi to guarantee that the resulting hue is a positive
      # floating point number since delta is [-0.5, 0.5].
      hue = math_ops.mod(hue + (delta + 1.), 1.)

      hsv_altered = array_ops.concat([hue, saturation, value], 2)
      rgb_altered = gen_image_ops.hsv_to_rgb(hsv_altered)
    else:
      rgb_altered = gen_image_ops.adjust_hue(flt_image, delta)

    return convert_image_dtype(rgb_altered, orig_dtype) 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:52,代码来源:image_ops_impl.py

示例15: adjust_hue

# 需要导入模块: from tensorflow.python.ops import math_ops [as 别名]
# 或者: from tensorflow.python.ops.math_ops import mod [as 别名]
def adjust_hue(image, delta, name=None):
  """Adjust hue of an RGB image.

  This is a convenience method that converts an RGB image to float
  representation, converts it to HSV, add an offset to the hue channel, converts
  back to RGB and then back to the original data type. If several adjustments
  are chained it is advisable to minimize the number of redundant conversions.

  `image` is an RGB image.  The image hue is adjusted by converting the
  image to HSV and rotating the hue channel (H) by
  `delta`.  The image is then converted back to RGB.

  `delta` must be in the interval `[-1, 1]`.

  Args:
    image: RGB image or images. Size of the last dimension must be 3.
    delta: float.  How much to add to the hue channel.
    name: A name for this operation (optional).

  Returns:
    Adjusted image(s), same shape and DType as `image`.
  """
  with ops.name_scope(name, 'adjust_hue', [image]) as name:
    image = ops.convert_to_tensor(image, name='image')
    # Remember original dtype to so we can convert back if needed
    orig_dtype = image.dtype
    flt_image = convert_image_dtype(image, dtypes.float32)

    # TODO(zhengxq): we will switch to the fused version after we add a GPU
    # kernel for that.
    fused = os.environ.get('TF_ADJUST_HUE_FUSED', '')
    fused = fused.lower() in ('true', 't', '1')

    if not fused:
      hsv = gen_image_ops.rgb_to_hsv(flt_image)

      hue = array_ops.slice(hsv, [0, 0, 0], [-1, -1, 1])
      saturation = array_ops.slice(hsv, [0, 0, 1], [-1, -1, 1])
      value = array_ops.slice(hsv, [0, 0, 2], [-1, -1, 1])

      # Note that we add 2*pi to guarantee that the resulting hue is a positive
      # floating point number since delta is [-0.5, 0.5].
      hue = math_ops.mod(hue + (delta + 1.), 1.)

      hsv_altered = array_ops.concat(2, [hue, saturation, value])
      rgb_altered = gen_image_ops.hsv_to_rgb(hsv_altered)
    else:
      rgb_altered = gen_image_ops.adjust_hue(flt_image, delta)

    return convert_image_dtype(rgb_altered, orig_dtype) 
开发者ID:tobegit3hub,项目名称:deep_image_model,代码行数:52,代码来源:image_ops.py


注:本文中的tensorflow.python.ops.math_ops.mod方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。