本文整理汇总了Python中tensorflow.python.ops.math_ops.greater_equal方法的典型用法代码示例。如果您正苦于以下问题:Python math_ops.greater_equal方法的具体用法?Python math_ops.greater_equal怎么用?Python math_ops.greater_equal使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.python.ops.math_ops
的用法示例。
在下文中一共展示了math_ops.greater_equal方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _verify_compatible_image_shapes
# 需要导入模块: from tensorflow.python.ops import math_ops [as 别名]
# 或者: from tensorflow.python.ops.math_ops import greater_equal [as 别名]
def _verify_compatible_image_shapes(img1, img2):
"""Checks if two image tensors are compatible for applying SSIM or PSNR.
This function checks if two sets of images have ranks at least 3, and if the
last three dimensions match.
Args:
img1: Tensor containing the first image batch.
img2: Tensor containing the second image batch.
Returns:
A tuple containing: the first tensor shape, the second tensor shape, and a
list of control_flow_ops.Assert() ops implementing the checks.
Raises:
ValueError: When static shape check fails.
"""
shape1 = img1.get_shape().with_rank_at_least(3)
shape2 = img2.get_shape().with_rank_at_least(3)
shape1[-3:].assert_is_compatible_with(shape2[-3:])
if shape1.ndims is not None and shape2.ndims is not None:
for dim1, dim2 in zip(reversed(shape1.dims[:-3]),
reversed(shape2.dims[:-3])):
if not (dim1 == 1 or dim2 == 1 or dim1.is_compatible_with(dim2)):
raise ValueError('Two images are not compatible: %s and %s' % (shape1, shape2))
shape1, shape2 = array_ops.shape_n([img1, img2])
checks = []
checks.append(control_flow_ops.Assert(
math_ops.greater_equal(array_ops.size(shape1), 3),
[shape1, shape2], summarize=10))
checks.append(control_flow_ops.Assert(
math_ops.reduce_all(math_ops.equal(shape1[-3:], shape2[-3:])),
[shape1, shape2], summarize=10))
return shape1, shape2, checks
示例2: assert_greater_equal
# 需要导入模块: from tensorflow.python.ops import math_ops [as 别名]
# 或者: from tensorflow.python.ops.math_ops import greater_equal [as 别名]
def assert_greater_equal(x, y, data=None, summarize=None, message=None,
name=None):
"""Assert the condition `x >= y` holds element-wise.
Example of adding a dependency to an operation:
```python
with tf.control_dependencies([tf.assert_greater_equal(x, y)]):
output = tf.reduce_sum(x)
```
This condition holds if for every pair of (possibly broadcast) elements
`x[i]`, `y[i]`, we have `x[i] >= y[i]`.
If both `x` and `y` are empty, this is trivially satisfied.
Args:
x: Numeric `Tensor`.
y: Numeric `Tensor`, same dtype as and broadcastable to `x`.
data: The tensors to print out if the condition is False. Defaults to
error message and first few entries of `x`, `y`.
summarize: Print this many entries of each tensor.
message: A string to prefix to the default message.
name: A name for this operation (optional). Defaults to
"assert_greater_equal"
Returns:
Op that raises `InvalidArgumentError` if `x >= y` is False.
"""
message = message or ''
with ops.name_scope(name, 'assert_greater_equal', [x, y, data]):
x = ops.convert_to_tensor(x, name='x')
y = ops.convert_to_tensor(y, name='y')
if data is None:
data = [
message,
'Condition x >= y did not hold element-wise:'
'x (%s) = ' % x.name, x, 'y (%s) = ' % y.name, y
]
condition = math_ops.reduce_all(math_ops.greater_equal(x, y))
return control_flow_ops.Assert(condition, data, summarize=summarize)
示例3: _MaximumGrad
# 需要导入模块: from tensorflow.python.ops import math_ops [as 别名]
# 或者: from tensorflow.python.ops.math_ops import greater_equal [as 别名]
def _MaximumGrad(op, grad):
"""Returns grad*(x > y, x <= y) with type of grad."""
return _MaximumMinimumGrad(op, grad, math_ops.greater_equal)
示例4: _prune_invalid_ids
# 需要导入模块: from tensorflow.python.ops import math_ops [as 别名]
# 或者: from tensorflow.python.ops.math_ops import greater_equal [as 别名]
def _prune_invalid_ids(sparse_ids, sparse_weights):
"""Prune invalid IDs (< 0) from the input ids and weights."""
is_id_valid = math_ops.greater_equal(sparse_ids.values, 0)
if sparse_weights is not None:
is_id_valid = math_ops.logical_and(
is_id_valid, math_ops.greater(sparse_weights.values, 0))
sparse_ids = sparse_ops.sparse_retain(sparse_ids, is_id_valid)
if sparse_weights is not None:
sparse_weights = sparse_ops.sparse_retain(sparse_weights, is_id_valid)
return sparse_ids, sparse_weights
示例5: _streaming_accuracy_at_threshold
# 需要导入模块: from tensorflow.python.ops import math_ops [as 别名]
# 或者: from tensorflow.python.ops.math_ops import greater_equal [as 别名]
def _streaming_accuracy_at_threshold(predictions, labels, weights, threshold):
threshold_predictions = math_ops.to_float(
math_ops.greater_equal(predictions, threshold))
return metrics_lib.streaming_accuracy(
predictions=threshold_predictions, labels=labels, weights=weights)
示例6: _accuracy_at_threshold
# 需要导入模块: from tensorflow.python.ops import math_ops [as 别名]
# 或者: from tensorflow.python.ops.math_ops import greater_equal [as 别名]
def _accuracy_at_threshold(threshold):
def _accuracy_metric(predictions, labels, weights=None):
threshold_predictions = math_ops.to_float(
math_ops.greater_equal(predictions, threshold))
return metric_ops.streaming_accuracy(
predictions=threshold_predictions, labels=labels, weights=weights)
return _accuracy_metric
示例7: __ge__
# 需要导入模块: from tensorflow.python.ops import math_ops [as 别名]
# 或者: from tensorflow.python.ops.math_ops import greater_equal [as 别名]
def __ge__(self, other):
return greater_equal(self, other)
示例8: assert_greater_equal
# 需要导入模块: from tensorflow.python.ops import math_ops [as 别名]
# 或者: from tensorflow.python.ops.math_ops import greater_equal [as 别名]
def assert_greater_equal(x, y, data=None, summarize=None, message=None,
name=None):
"""Assert the condition `x >= y` holds element-wise.
Example of adding a dependency to an operation:
```python
with tf.control_dependencies([tf.assert_greater_equal(x, y)]):
output = tf.reduce_sum(x)
```
This condition holds if for every pair of (possibly broadcast) elements
`x[i]`, `y[i]`, we have `x[i] >= y[i]`.
If both `x` and `y` are empty, this is trivially satisfied.
Args:
x: Numeric `Tensor`.
y: Numeric `Tensor`, same dtype as and broadcastable to `x`.
data: The tensors to print out if the condition is False. Defaults to
error message and first few entries of `x`, `y`.
summarize: Print this many entries of each tensor.
message: A string to prefix to the default message.
name: A name for this operation (optional). Defaults to
"assert_greater_equal"
Returns:
Op that raises `InvalidArgumentError` if `x >= y` is False.
"""
message = message or ''
with ops.name_scope(name, 'assert_greater_equal', [x, y, data]):
x = ops.convert_to_tensor(x, name='x')
y = ops.convert_to_tensor(y, name='y')
if data is None:
data = [
message,
'Condition x >= y did not hold element-wise: x = ', x.name, x, 'y = ',
y.name, y
]
condition = math_ops.reduce_all(math_ops.greater_equal(x, y))
return control_flow_ops.Assert(condition, data, summarize=summarize)
示例9: _accuracy_at_threshold
# 需要导入模块: from tensorflow.python.ops import math_ops [as 别名]
# 或者: from tensorflow.python.ops.math_ops import greater_equal [as 别名]
def _accuracy_at_threshold(threshold):
def _accuracy_metric(predictions, labels, weights=None):
threshold_predictions = math_ops.to_float(
math_ops.greater_equal(predictions, threshold))
return metrics_lib.streaming_accuracy(
predictions=threshold_predictions, labels=labels, weights=weights)
return _accuracy_metric
示例10: setUp
# 需要导入模块: from tensorflow.python.ops import math_ops [as 别名]
# 或者: from tensorflow.python.ops.math_ops import greater_equal [as 别名]
def setUp(self):
super(CoreBinaryOpsTest, self).setUp()
self.x_probs_broadcast_tensor = array_ops.reshape(
self.x_probs_lt.tensor, [self.x_size, 1, self.probs_size])
self.channel_probs_broadcast_tensor = array_ops.reshape(
self.channel_probs_lt.tensor, [1, self.channel_size, self.probs_size])
# == and != are not element-wise for tf.Tensor, so they shouldn't be
# elementwise for LabeledTensor, either.
self.ops = [
('add', operator.add, math_ops.add, core.add),
('sub', operator.sub, math_ops.subtract, core.sub),
('mul', operator.mul, math_ops.multiply, core.mul),
('div', operator.truediv, math_ops.div, core.div),
('mod', operator.mod, math_ops.mod, core.mod),
('pow', operator.pow, math_ops.pow, core.pow_function),
('equal', None, math_ops.equal, core.equal),
('less', operator.lt, math_ops.less, core.less),
('less_equal', operator.le, math_ops.less_equal, core.less_equal),
('not_equal', None, math_ops.not_equal, core.not_equal),
('greater', operator.gt, math_ops.greater, core.greater),
('greater_equal', operator.ge, math_ops.greater_equal,
core.greater_equal),
]
self.test_lt_1 = self.x_probs_lt
self.test_lt_2 = self.channel_probs_lt
self.test_lt_1_broadcast = self.x_probs_broadcast_tensor
self.test_lt_2_broadcast = self.channel_probs_broadcast_tensor
self.broadcast_axes = [self.a0, self.a1, self.a3]
示例11: test_forward_rel_ops
# 需要导入模块: from tensorflow.python.ops import math_ops [as 别名]
# 或者: from tensorflow.python.ops.math_ops import greater_equal [as 别名]
def test_forward_rel_ops():
t1 = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
t2 = np.array([[9, 8, 7], [6, 5, 4], [3, 2, 1]])
_test_forward_rel_op([t1, t2], math_ops.less)
_test_forward_rel_op([t1, t2], math_ops.greater)
_test_forward_rel_op([t1, t2], math_ops.less_equal)
_test_forward_rel_op([t1, t2], math_ops.greater_equal)
_test_forward_rel_op([t1, t2], math_ops.equal)
_test_forward_rel_op([t1, t2], math_ops.not_equal)
#######################################################################
# Main
# ----
示例12: _ssim_per_channel
# 需要导入模块: from tensorflow.python.ops import math_ops [as 别名]
# 或者: from tensorflow.python.ops.math_ops import greater_equal [as 别名]
def _ssim_per_channel(img1, img2, max_val=1.0):
filter_size = constant_op.constant(11, dtype=dtypes.int32)
filter_sigma = constant_op.constant(1.5, dtype=img1.dtype)
shape1, shape2 = array_ops.shape_n([img1, img2])
checks = [
control_flow_ops.Assert(math_ops.reduce_all(math_ops.greater_equal(
shape1[-3:-1], filter_size)), [shape1, filter_size], summarize=8),
control_flow_ops.Assert(math_ops.reduce_all(math_ops.greater_equal(
shape2[-3:-1], filter_size)), [shape2, filter_size], summarize=8)]
# Enforce the check to run before computation.
with ops.control_dependencies(checks):
img1 = array_ops.identity(img1)
kernel = _fspecial_gauss(filter_size, filter_sigma)
kernel = array_ops.tile(kernel, multiples=[1, 1, shape1[-1], 1])
compensation = 1.0
def reducer(x):
shape = array_ops.shape(x)
x = array_ops.reshape(x, shape=array_ops.concat([[-1], shape[-3:]], 0))
y = nn.depthwise_conv2d(x, kernel, strides=[1, 1, 1, 1], padding='VALID')
return array_ops.reshape(y, array_ops.concat([shape[:-3],
array_ops.shape(y)[1:]], 0))
luminance, cs = _ssim_helper(img1, img2, reducer, max_val, compensation)
# Average over the second and the third from the last: height, width.
axes = constant_op.constant([-3, -2], dtype=dtypes.int32)
ssim_val = math_ops.reduce_mean(luminance * cs, axes)
cs = math_ops.reduce_mean(cs, axes)
luminance = math_ops.reduce_mean(luminance, axes)
return ssim_val, cs, luminance
示例13: _accuracy_at_threshold
# 需要导入模块: from tensorflow.python.ops import math_ops [as 别名]
# 或者: from tensorflow.python.ops.math_ops import greater_equal [as 别名]
def _accuracy_at_threshold(threshold):
def _accuracy_metric(predictions, labels, weights=None):
threshold_predictions = math_ops.to_float(
math_ops.greater_equal(predictions, threshold))
return metrics_lib.streaming_accuracy(predictions=threshold_predictions,
labels=labels,
weights=weights)
return _accuracy_metric
示例14: mean_reciprocal_rank
# 需要导入模块: from tensorflow.python.ops import math_ops [as 别名]
# 或者: from tensorflow.python.ops.math_ops import greater_equal [as 别名]
def mean_reciprocal_rank(labels, predictions, weights=None, name=None):
"""Computes mean reciprocal rank (MRR).
Args:
labels: A `Tensor` of the same shape as `predictions`. A value >= 1 means a
relevant example.
predictions: A `Tensor` with shape [batch_size, list_size]. Each value is
the ranking score of the corresponding example.
weights: A `Tensor` of the same shape of predictions or [batch_size, 1]. The
former case is per-example and the latter case is per-list.
name: A string used as the name for this metric.
Returns:
A metric for the weighted mean reciprocal rank of the batch.
"""
with ops.name_scope(name, 'mean_reciprocal_rank',
(labels, predictions, weights)):
_, list_size = array_ops.unstack(array_ops.shape(predictions))
labels, predictions, weights, topn = _prepare_and_validate_params(
labels, predictions, weights, list_size)
sorted_labels, = utils.sort_by_scores(predictions, [labels], topn=topn)
# Relevance = 1.0 when labels >= 1.0 to accommodate graded relevance.
relevance = math_ops.to_float(
math_ops.greater_equal(
sorted_labels, 1.0))
reciprocal_rank = 1.0 / math_ops.to_float(math_ops.range(1, topn + 1))
# MRR has a shape of [batch_size, 1]
mrr = math_ops.reduce_max(
relevance * reciprocal_rank, axis=1, keepdims=True)
return math_ops.reduce_mean(
mrr * array_ops.ones_like(weights) * weights)
示例15: expected_reciprocal_rank
# 需要导入模块: from tensorflow.python.ops import math_ops [as 别名]
# 或者: from tensorflow.python.ops.math_ops import greater_equal [as 别名]
def expected_reciprocal_rank(
labels, predictions, weights=None, topn=None, name=None):
"""Computes expected reciprocal rank (ERR).
Args:
labels: A `Tensor` of the same shape as `predictions`. A value >= 1 means a
relevant example.
predictions: A `Tensor` with shape [batch_size, list_size]. Each value is
the ranking score of the corresponding example.
weights: A `Tensor` of the same shape of predictions or [batch_size, 1]. The
former case is per-example and the latter case is per-list.
topn: A cutoff for how many examples to consider for this metric.
name: A string used as the name for this metric.
Returns:
A metric for the weighted expected reciprocal rank of the batch.
"""
with ops.name_scope(name, 'expected_reciprocal_rank',
(labels, predictions, weights)):
labels, predictions, weights, topn = _prepare_and_validate_params(
labels, predictions, weights, topn)
sorted_labels, sorted_weights = utils.sort_by_scores(
predictions, [labels, weights], topn=topn)
_, list_size = array_ops.unstack(array_ops.shape(sorted_labels))
relevance = (math_ops.pow(2.0, sorted_labels) - 1) / \
math_ops.pow(2.0, RankingMetricKey.MAX_LABEL)
non_rel = tf.math.cumprod(1.0 - relevance, axis=1) / (1.0 - relevance)
reciprocal_rank = 1.0 / \
math_ops.to_float(math_ops.range(1, list_size + 1))
mask = math_ops.to_float(math_ops.greater_equal(
reciprocal_rank, 1.0 / (topn + 1)))
reciprocal_rank = reciprocal_rank * mask
# ERR has a shape of [batch_size, 1]
err = math_ops.reduce_sum(
relevance * non_rel * reciprocal_rank * sorted_weights, axis=1, keepdims=True)
return math_ops.reduce_mean(err)