本文整理汇总了Python中tensorflow.python.ops.io_ops.TFRecordReader方法的典型用法代码示例。如果您正苦于以下问题:Python io_ops.TFRecordReader方法的具体用法?Python io_ops.TFRecordReader怎么用?Python io_ops.TFRecordReader使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.python.ops.io_ops
的用法示例。
在下文中一共展示了io_ops.TFRecordReader方法的12个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: TFRecordSource
# 需要导入模块: from tensorflow.python.ops import io_ops [as 别名]
# 或者: from tensorflow.python.ops.io_ops import TFRecordReader [as 别名]
def TFRecordSource(file_names,
reader_kwargs=None,
enqueue_size=1,
batch_size=1,
queue_capacity=None,
shuffle=False,
min_after_dequeue=None,
num_threads=1,
seed=None):
return ReaderSource(io_ops.TFRecordReader,
work_units=file_names,
reader_kwargs=reader_kwargs,
enqueue_size=enqueue_size,
batch_size=batch_size,
queue_capacity=queue_capacity,
shuffle=shuffle,
min_after_dequeue=min_after_dequeue,
num_threads=num_threads,
seed=seed)
示例2: testTFRecordReader
# 需要导入模块: from tensorflow.python.ops import io_ops [as 别名]
# 或者: from tensorflow.python.ops.io_ops import TFRecordReader [as 别名]
def testTFRecordReader(self):
with self.test_session():
self._tfrecord_paths = test_utils.create_tfrecord_files(
self.get_temp_dir(), num_files=3)
key, value = parallel_reader.parallel_read(
self._tfrecord_paths, reader_class=io_ops.TFRecordReader, num_readers=3)
sv = supervisor.Supervisor(logdir=self.get_temp_dir())
with sv.prepare_or_wait_for_session() as sess:
sv.start_queue_runners(sess)
flowers = 0
num_reads = 100
for _ in range(num_reads):
current_key, _ = sess.run([key, value])
if 'flowers' in str(current_key):
flowers += 1
self.assertGreater(flowers, 0)
self.assertEquals(flowers, num_reads)
示例3: testOutOfRangeError
# 需要导入模块: from tensorflow.python.ops import io_ops [as 别名]
# 或者: from tensorflow.python.ops.io_ops import TFRecordReader [as 别名]
def testOutOfRangeError(self):
with self.test_session():
[tfrecord_path] = test_utils.create_tfrecord_files(
self.get_temp_dir(), num_files=1)
key, value = parallel_reader.single_pass_read(
tfrecord_path, reader_class=io_ops.TFRecordReader)
init_op = variables.local_variables_initializer()
with self.test_session() as sess:
sess.run(init_op)
with queues.QueueRunners(sess):
num_reads = 11
with self.assertRaises(errors_impl.OutOfRangeError):
for _ in range(num_reads):
sess.run([key, value])
示例4: testTFRecordReader
# 需要导入模块: from tensorflow.python.ops import io_ops [as 别名]
# 或者: from tensorflow.python.ops.io_ops import TFRecordReader [as 别名]
def testTFRecordReader(self):
with self.cached_session():
self._tfrecord_paths = test_utils.create_tfrecord_files(
tempfile.mkdtemp(), num_files=3)
key, value = parallel_reader.parallel_read(
self._tfrecord_paths, reader_class=io_ops.TFRecordReader, num_readers=3)
sv = supervisor.Supervisor(logdir=tempfile.mkdtemp())
with sv.prepare_or_wait_for_session() as sess:
sv.start_queue_runners(sess)
flowers = 0
num_reads = 100
for _ in range(num_reads):
current_key, _ = sess.run([key, value])
if 'flowers' in str(current_key):
flowers += 1
self.assertGreater(flowers, 0)
self.assertEqual(flowers, num_reads)
示例5: testOutOfRangeError
# 需要导入模块: from tensorflow.python.ops import io_ops [as 别名]
# 或者: from tensorflow.python.ops.io_ops import TFRecordReader [as 别名]
def testOutOfRangeError(self):
with self.cached_session():
[tfrecord_path] = test_utils.create_tfrecord_files(
tempfile.mkdtemp(), num_files=1)
key, value = parallel_reader.single_pass_read(
tfrecord_path, reader_class=io_ops.TFRecordReader)
init_op = variables.local_variables_initializer()
with self.cached_session() as sess:
sess.run(init_op)
with queues.QueueRunners(sess):
num_reads = 11
with self.assertRaises(errors_impl.OutOfRangeError):
for _ in range(num_reads):
sess.run([key, value])
示例6: _verify_all_data_sources_read
# 需要导入模块: from tensorflow.python.ops import io_ops [as 别名]
# 或者: from tensorflow.python.ops.io_ops import TFRecordReader [as 别名]
def _verify_all_data_sources_read(self, shared_queue):
with self.test_session():
tfrecord_paths = test_utils.create_tfrecord_files(
self.get_temp_dir(), num_files=3)
num_readers = len(tfrecord_paths)
p_reader = parallel_reader.ParallelReader(
io_ops.TFRecordReader, shared_queue, num_readers=num_readers)
data_files = parallel_reader.get_data_files(tfrecord_paths)
filename_queue = input_lib.string_input_producer(data_files)
key, value = p_reader.read(filename_queue)
count0 = 0
count1 = 0
count2 = 0
num_reads = 50
sv = supervisor.Supervisor(logdir=self.get_temp_dir())
with sv.prepare_or_wait_for_session() as sess:
sv.start_queue_runners(sess)
for _ in range(num_reads):
current_key, _ = sess.run([key, value])
if '0-of-3' in str(current_key):
count0 += 1
if '1-of-3' in str(current_key):
count1 += 1
if '2-of-3' in str(current_key):
count2 += 1
self.assertGreater(count0, 0)
self.assertGreater(count1, 0)
self.assertGreater(count2, 0)
self.assertEquals(count0 + count1 + count2, num_reads)
示例7: _create_tfrecord_dataset
# 需要导入模块: from tensorflow.python.ops import io_ops [as 别名]
# 或者: from tensorflow.python.ops.io_ops import TFRecordReader [as 别名]
def _create_tfrecord_dataset(tmpdir):
if not gfile.Exists(tmpdir):
gfile.MakeDirs(tmpdir)
data_sources = test_utils.create_tfrecord_files(tmpdir, num_files=1)
keys_to_features = {
'image/encoded':
parsing_ops.FixedLenFeature(
shape=(), dtype=dtypes.string, default_value=''),
'image/format':
parsing_ops.FixedLenFeature(
shape=(), dtype=dtypes.string, default_value='jpeg'),
'image/class/label':
parsing_ops.FixedLenFeature(
shape=[1],
dtype=dtypes.int64,
default_value=array_ops.zeros(
[1], dtype=dtypes.int64))
}
items_to_handlers = {
'image': tfexample_decoder.Image(),
'label': tfexample_decoder.Tensor('image/class/label'),
}
decoder = tfexample_decoder.TFExampleDecoder(keys_to_features,
items_to_handlers)
return dataset.Dataset(
data_sources=data_sources,
reader=io_ops.TFRecordReader,
decoder=decoder,
num_samples=100,
items_to_descriptions=None)
示例8: _verify_all_data_sources_read
# 需要导入模块: from tensorflow.python.ops import io_ops [as 别名]
# 或者: from tensorflow.python.ops.io_ops import TFRecordReader [as 别名]
def _verify_all_data_sources_read(self, shared_queue):
with self.cached_session():
tfrecord_paths = test_utils.create_tfrecord_files(
tempfile.mkdtemp(), num_files=3)
num_readers = len(tfrecord_paths)
p_reader = parallel_reader.ParallelReader(
io_ops.TFRecordReader, shared_queue, num_readers=num_readers)
data_files = parallel_reader.get_data_files(tfrecord_paths)
filename_queue = input_lib.string_input_producer(data_files)
key, value = p_reader.read(filename_queue)
count0 = 0
count1 = 0
count2 = 0
num_reads = 50
sv = supervisor.Supervisor(logdir=tempfile.mkdtemp())
with sv.prepare_or_wait_for_session() as sess:
sv.start_queue_runners(sess)
for _ in range(num_reads):
current_key, _ = sess.run([key, value])
if '0-of-3' in str(current_key):
count0 += 1
if '1-of-3' in str(current_key):
count1 += 1
if '2-of-3' in str(current_key):
count2 += 1
self.assertGreater(count0, 0)
self.assertGreater(count1, 0)
self.assertGreater(count2, 0)
self.assertEqual(count0 + count1 + count2, num_reads)
示例9: read_batch_record_features
# 需要导入模块: from tensorflow.python.ops import io_ops [as 别名]
# 或者: from tensorflow.python.ops.io_ops import TFRecordReader [as 别名]
def read_batch_record_features(file_pattern, batch_size, features,
randomize_input=True, num_epochs=None,
queue_capacity=10000, reader_num_threads=1,
name='dequeue_record_examples'):
"""Reads TFRecord, queues, batches and parses `Example` proto.
See more detailed description in `read_examples`.
Args:
file_pattern: List of files or pattern of file paths containing
`Example` records. See `tf.gfile.Glob` for pattern rules.
batch_size: An int or scalar `Tensor` specifying the batch size to use.
features: A `dict` mapping feature keys to `FixedLenFeature` or
`VarLenFeature` values.
randomize_input: Whether the input should be randomized.
num_epochs: Integer specifying the number of times to read through the
dataset. If None, cycles through the dataset forever. NOTE - If specified,
creates a variable that must be initialized, so call
tf.local_variables_initializer() as shown in the tests.
queue_capacity: Capacity for input queue.
reader_num_threads: The number of threads to read examples.
name: Name of resulting op.
Returns:
A dict of `Tensor` or `SparseTensor` objects for each in `features`.
Raises:
ValueError: for invalid inputs.
"""
return read_batch_features(
file_pattern=file_pattern,
batch_size=batch_size,
features=features,
reader=io_ops.TFRecordReader,
randomize_input=randomize_input,
num_epochs=num_epochs,
queue_capacity=queue_capacity,
reader_num_threads=reader_num_threads,
name=name)
示例10: read_batch_record_features
# 需要导入模块: from tensorflow.python.ops import io_ops [as 别名]
# 或者: from tensorflow.python.ops.io_ops import TFRecordReader [as 别名]
def read_batch_record_features(file_pattern,
batch_size,
features,
randomize_input=True,
num_epochs=None,
queue_capacity=10000,
reader_num_threads=1,
name='dequeue_record_examples'):
"""Reads TFRecord, queues, batches and parses `Example` proto.
See more detailed description in `read_examples`.
Args:
file_pattern: List of files or patterns of file paths containing
`Example` records. See `tf.gfile.Glob` for pattern rules.
batch_size: An int or scalar `Tensor` specifying the batch size to use.
features: A `dict` mapping feature keys to `FixedLenFeature` or
`VarLenFeature` values.
randomize_input: Whether the input should be randomized.
num_epochs: Integer specifying the number of times to read through the
dataset. If None, cycles through the dataset forever. NOTE - If specified,
creates a variable that must be initialized, so call
tf.local_variables_initializer() and run the op in a session.
queue_capacity: Capacity for input queue.
reader_num_threads: The number of threads to read examples. In order to have
predicted and repeatable order of reading and enqueueing, such as in
prediction and evaluation mode, `reader_num_threads` should be 1.
name: Name of resulting op.
Returns:
A dict of `Tensor` or `SparseTensor` objects for each in `features`.
Raises:
ValueError: for invalid inputs.
"""
return read_batch_features(
file_pattern=file_pattern,
batch_size=batch_size,
features=features,
reader=io_ops.TFRecordReader,
randomize_input=randomize_input,
num_epochs=num_epochs,
queue_capacity=queue_capacity,
reader_num_threads=reader_num_threads,
name=name)
示例11: read_batch_record_features
# 需要导入模块: from tensorflow.python.ops import io_ops [as 别名]
# 或者: from tensorflow.python.ops.io_ops import TFRecordReader [as 别名]
def read_batch_record_features(file_pattern,
batch_size,
features,
randomize_input=True,
num_epochs=None,
queue_capacity=10000,
reader_num_threads=1,
name='dequeue_record_examples'):
"""Reads TFRecord, queues, batches and parses `Example` proto.
See more detailed description in `read_examples`.
Args:
file_pattern: List of files or pattern of file paths containing
`Example` records. See `tf.gfile.Glob` for pattern rules.
batch_size: An int or scalar `Tensor` specifying the batch size to use.
features: A `dict` mapping feature keys to `FixedLenFeature` or
`VarLenFeature` values.
randomize_input: Whether the input should be randomized.
num_epochs: Integer specifying the number of times to read through the
dataset. If None, cycles through the dataset forever. NOTE - If specified,
creates a variable that must be initialized, so call
tf.local_variables_initializer() as shown in the tests.
queue_capacity: Capacity for input queue.
reader_num_threads: The number of threads to read examples.
name: Name of resulting op.
Returns:
A dict of `Tensor` or `SparseTensor` objects for each in `features`.
Raises:
ValueError: for invalid inputs.
"""
return read_batch_features(
file_pattern=file_pattern,
batch_size=batch_size,
features=features,
reader=io_ops.TFRecordReader,
randomize_input=randomize_input,
num_epochs=num_epochs,
queue_capacity=queue_capacity,
reader_num_threads=reader_num_threads,
name=name)
示例12: _verify_read_up_to_out
# 需要导入模块: from tensorflow.python.ops import io_ops [as 别名]
# 或者: from tensorflow.python.ops.io_ops import TFRecordReader [as 别名]
def _verify_read_up_to_out(self, shared_queue):
with self.cached_session():
num_files = 3
num_records_per_file = 7
tfrecord_paths = test_utils.create_tfrecord_files(
tempfile.mkdtemp(),
num_files=num_files,
num_records_per_file=num_records_per_file)
p_reader = parallel_reader.ParallelReader(
io_ops.TFRecordReader, shared_queue, num_readers=5)
data_files = parallel_reader.get_data_files(tfrecord_paths)
filename_queue = input_lib.string_input_producer(data_files, num_epochs=1)
key, value = p_reader.read_up_to(filename_queue, 4)
count0 = 0
count1 = 0
count2 = 0
all_keys_count = 0
all_values_count = 0
sv = supervisor.Supervisor(logdir=tempfile.mkdtemp())
with sv.prepare_or_wait_for_session() as sess:
sv.start_queue_runners(sess)
while True:
try:
current_keys, current_values = sess.run([key, value])
self.assertEqual(len(current_keys), len(current_values))
all_keys_count += len(current_keys)
all_values_count += len(current_values)
for current_key in current_keys:
if '0-of-3' in str(current_key):
count0 += 1
if '1-of-3' in str(current_key):
count1 += 1
if '2-of-3' in str(current_key):
count2 += 1
except errors_impl.OutOfRangeError:
break
self.assertEqual(count0, num_records_per_file)
self.assertEqual(count1, num_records_per_file)
self.assertEqual(count2, num_records_per_file)
self.assertEqual(
all_keys_count,
num_files * num_records_per_file)
self.assertEqual(all_values_count, all_keys_count)
self.assertEqual(
count0 + count1 + count2,
all_keys_count)