本文整理汇总了Python中tensorflow.python.ops.init_ops.constant_initializer方法的典型用法代码示例。如果您正苦于以下问题:Python init_ops.constant_initializer方法的具体用法?Python init_ops.constant_initializer怎么用?Python init_ops.constant_initializer使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.python.ops.init_ops
的用法示例。
在下文中一共展示了init_ops.constant_initializer方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: call
# 需要导入模块: from tensorflow.python.ops import init_ops [as 别名]
# 或者: from tensorflow.python.ops.init_ops import constant_initializer [as 别名]
def call(self, inputs, state):
"""Gated recurrent unit (GRU) with nunits cells."""
with vs.variable_scope("gates"): # Reset gate and update gate.
# We start with bias of 1.0 to not reset and not update.
bias_ones = self._bias_initializer
if self._bias_initializer is None:
dtype = [a.dtype for a in [inputs, state]][0]
bias_ones = init_ops.constant_initializer(1.0, dtype=dtype)
value = math_ops.sigmoid(
_linear([inputs, state], 2 * self._num_units, True, bias_ones,
self._kernel_initializer))
r, u = array_ops.split(value=value, num_or_size_splits=2, axis=1)
with vs.variable_scope("candidate"):
c = self._activation(
_linear([inputs, r * state], self._num_units, True,
self._bias_initializer, self._kernel_initializer))
new_h = u * state + (1 - u) * c
return new_h, new_h
示例2: _highway
# 需要导入模块: from tensorflow.python.ops import init_ops [as 别名]
# 或者: from tensorflow.python.ops.init_ops import constant_initializer [as 别名]
def _highway(self, inp, out):
input_size = inp.get_shape().with_rank(2)[1].value
carry_weight = vs.get_variable("carry_w", [input_size, input_size])
carry_bias = vs.get_variable(
"carry_b", [input_size],
initializer=init_ops.constant_initializer(
self._carry_bias_init))
carry = math_ops.sigmoid(nn_ops.xw_plus_b(inp, carry_weight, carry_bias))
if self._couple_carry_transform_gates:
transform = 1 - carry
else:
transform_weight = vs.get_variable("transform_w",
[input_size, input_size])
transform_bias = vs.get_variable(
"transform_b", [input_size],
initializer=init_ops.constant_initializer(
-self._carry_bias_init))
transform = math_ops.sigmoid(nn_ops.xw_plus_b(inp,
transform_weight,
transform_bias))
return inp * carry + out * transform
示例3: DISABLED_testVar
# 需要导入模块: from tensorflow.python.ops import init_ops [as 别名]
# 或者: from tensorflow.python.ops.init_ops import constant_initializer [as 别名]
def DISABLED_testVar(self):
with self.test_session() as sess:
with specs.ops:
# pylint: disable=undefined-variable
v = Var("test_var",
shape=[2, 2],
initializer=init_ops.constant_initializer(42.0))
inputs = constant_op.constant(_rand(10, 100))
outputs = v.funcall(inputs)
self.assertEqual(len(variables.global_variables()), 1)
sess.run([outputs.initializer])
outputs_value = outputs.eval()
self.assertEqual(outputs_value.shape, (2, 2))
self.assertEqual(outputs_value[1, 1], 42.0)
# XXX: the cleverness of this code is over 9000
# TODO: original author please fix
示例4: testIndRNNCell
# 需要导入模块: from tensorflow.python.ops import init_ops [as 别名]
# 或者: from tensorflow.python.ops.init_ops import constant_initializer [as 别名]
def testIndRNNCell(self):
"""Tests basic cell functionality"""
with self.test_session() as sess:
x = array_ops.zeros([1, 4])
m = array_ops.zeros([1, 4])
# Create the cell with input weights = 1 and constant recurrent weights
recurrent_init = init_ops.constant_initializer([-3., -2., 1., 3.])
input_init = init_ops.constant_initializer(1.)
cell = IndRNNCell(num_units=4,
recurrent_kernel_initializer=recurrent_init,
input_kernel_initializer=input_init,
activation=array_ops.identity)
output, _ = cell(x, m)
sess.run([variables.global_variables_initializer()])
res = sess.run([output],
{x.name: np.array([[1., 0., 0., 0.]]),
m.name: np.array([[2., 2., 2., 2.]])})
# (Pre)activations (1*1 + 2*rec_weight) should be -5, -3, 3, 7
self.assertAllEqual(res[0], [[-5., -3., 3., 7.]])
示例5: testIndRNNCellBounds
# 需要导入模块: from tensorflow.python.ops import init_ops [as 别名]
# 或者: from tensorflow.python.ops.init_ops import constant_initializer [as 别名]
def testIndRNNCellBounds(self):
"""Tests cell with recurrent weights exceeding the bounds."""
with self.test_session() as sess:
x = array_ops.zeros([1, 4])
m = array_ops.zeros([1, 4])
# Create the cell with input weights = 1 and constant recurrent weights
recurrent_init = init_ops.constant_initializer([-5., -2., 0.1, 5.])
input_init = init_ops.constant_initializer(1.)
cell = IndRNNCell(num_units=4,
recurrent_min_abs=1.,
recurrent_max_abs=3.,
recurrent_kernel_initializer=recurrent_init,
input_kernel_initializer=input_init,
activation=array_ops.identity)
output, _ = cell(x, m)
sess.run([variables.global_variables_initializer()])
res = sess.run([output],
{x.name: np.array([[1., 0., 0., 0.]]),
m.name: np.array([[2., 2., 2., 2.]])})
# Recurrent weights should be clipped to -3, -2, 1, 3
# (Pre)activations (1*1 + 2*rec_weight) should be -5, -3, 3, 7
self.assertAllEqual(res[0], [[-5., -3., 3., 7.]])
示例6: testNoGlobalStep
# 需要导入模块: from tensorflow.python.ops import init_ops [as 别名]
# 或者: from tensorflow.python.ops.init_ops import constant_initializer [as 别名]
def testNoGlobalStep(self):
optimizers = [
"SGD", gradient_descent.GradientDescentOptimizer,
gradient_descent.GradientDescentOptimizer(learning_rate=0.1)
]
for optimizer in optimizers:
with ops.Graph().as_default() as g, self.session(graph=g) as session:
x = array_ops.placeholder(dtypes.float32, [])
var = variable_scope.get_variable(
"test", [], initializer=init_ops.constant_initializer(10))
loss = math_ops.abs(var * x)
update_var = variable_scope.get_variable(
"update", [], initializer=init_ops.constant_initializer(10))
update_op = state_ops.assign(update_var, 20)
train = optimizers_lib.optimize_loss(
loss,
global_step=None,
learning_rate=0.1,
optimizer=optimizer,
update_ops=[update_op])
variables.global_variables_initializer().run()
session.run(train, feed_dict={x: 5})
self.assertEqual(9.5, var.eval())
self.assertEqual(20, update_var.eval())
示例7: testNoGlobalStepWithDecay
# 需要导入模块: from tensorflow.python.ops import init_ops [as 别名]
# 或者: from tensorflow.python.ops.init_ops import constant_initializer [as 别名]
def testNoGlobalStepWithDecay(self):
optimizers = [
"SGD", gradient_descent.GradientDescentOptimizer,
gradient_descent.GradientDescentOptimizer(learning_rate=0.1)
]
for optimizer in optimizers:
with ops.Graph().as_default() as g, self.session(graph=g):
x = array_ops.placeholder(dtypes.float32, [])
var = variable_scope.get_variable(
"test", [], initializer=init_ops.constant_initializer(10))
loss = math_ops.abs(var * x)
update_var = variable_scope.get_variable(
"update", [], initializer=init_ops.constant_initializer(10))
update_op = state_ops.assign(update_var, 20)
with self.assertRaisesRegexp(
ValueError, "global_step is required for learning_rate_decay_fn"):
optimizers_lib.optimize_loss(
loss,
global_step=None,
learning_rate=0.1,
learning_rate_decay_fn=_no_op_learning_rate_decay_fn,
optimizer=optimizer,
update_ops=[update_op])
示例8: testUpdateOp
# 需要导入模块: from tensorflow.python.ops import init_ops [as 别名]
# 或者: from tensorflow.python.ops.init_ops import constant_initializer [as 别名]
def testUpdateOp(self):
optimizers = [
"SGD", gradient_descent.GradientDescentOptimizer,
gradient_descent.GradientDescentOptimizer(learning_rate=0.1)
]
for optimizer in optimizers:
with ops.Graph().as_default() as g, self.session(graph=g) as session:
x, var, loss, global_step = _setup_model()
update_var = variable_scope.get_variable(
"update", [], initializer=init_ops.constant_initializer(10))
update_op = state_ops.assign(update_var, 20)
train = optimizers_lib.optimize_loss(
loss,
global_step,
learning_rate=0.1,
optimizer=optimizer,
update_ops=[update_op])
variables.global_variables_initializer().run()
session.run(train, feed_dict={x: 5})
self.assertEqual(9.5, var.eval())
self.assertEqual(20, update_var.eval())
self.assertEqual(1, global_step.eval())
示例9: testUpdateOpNoIncrementGlobalStep
# 需要导入模块: from tensorflow.python.ops import init_ops [as 别名]
# 或者: from tensorflow.python.ops.init_ops import constant_initializer [as 别名]
def testUpdateOpNoIncrementGlobalStep(self):
optimizers = [
"SGD", gradient_descent.GradientDescentOptimizer,
gradient_descent.GradientDescentOptimizer(learning_rate=0.1)
]
for optimizer in optimizers:
with ops.Graph().as_default() as g, self.session(graph=g) as session:
x, var, loss, global_step = _setup_model()
update_var = variable_scope.get_variable(
"update", [], initializer=init_ops.constant_initializer(10))
update_op = state_ops.assign(update_var, 20)
train = optimizers_lib.optimize_loss(
loss,
global_step,
learning_rate=0.1,
optimizer=optimizer,
update_ops=[update_op],
increment_global_step=False)
variables.global_variables_initializer().run()
session.run(train, feed_dict={x: 5})
self.assertEqual(9.5, var.eval())
self.assertEqual(20, update_var.eval())
self.assertEqual(0, global_step.eval())
示例10: testUpdateOpWithNoOpDecay
# 需要导入模块: from tensorflow.python.ops import init_ops [as 别名]
# 或者: from tensorflow.python.ops.init_ops import constant_initializer [as 别名]
def testUpdateOpWithNoOpDecay(self):
optimizers = [
"SGD", gradient_descent.GradientDescentOptimizer,
gradient_descent.GradientDescentOptimizer(learning_rate=0.1)
]
for optimizer in optimizers:
with ops.Graph().as_default() as g, self.session(graph=g) as session:
x, var, loss, global_step = _setup_model()
update_var = variable_scope.get_variable(
"update", [], initializer=init_ops.constant_initializer(10))
update_op = state_ops.assign(update_var, 20)
train = optimizers_lib.optimize_loss(
loss,
global_step,
learning_rate=0.1,
learning_rate_decay_fn=_no_op_learning_rate_decay_fn,
optimizer=optimizer,
update_ops=[update_op])
variables.global_variables_initializer().run()
session.run(train, feed_dict={x: 5})
self.assertEqual(9.5, var.eval())
self.assertEqual(20, update_var.eval())
self.assertEqual(1, global_step.eval())
示例11: testUpdateOpFromCollection
# 需要导入模块: from tensorflow.python.ops import init_ops [as 别名]
# 或者: from tensorflow.python.ops.init_ops import constant_initializer [as 别名]
def testUpdateOpFromCollection(self):
optimizers = [
"SGD", gradient_descent.GradientDescentOptimizer,
gradient_descent.GradientDescentOptimizer(learning_rate=0.1)
]
for optimizer in optimizers:
with ops.Graph().as_default() as g, self.session(graph=g) as session:
x, var, loss, global_step = _setup_model()
update_var = variable_scope.get_variable(
"update", [], initializer=init_ops.constant_initializer(10))
update_op = state_ops.assign(update_var, 20)
ops.add_to_collection(ops.GraphKeys.UPDATE_OPS, update_op)
train = optimizers_lib.optimize_loss(
loss, global_step, learning_rate=0.1, optimizer=optimizer)
variables.global_variables_initializer().run()
session.run(train, feed_dict={x: 5})
var_value, update_var_value, global_step_value = session.run(
[var, update_var, global_step])
self.assertEqual(var_value, 9.5)
self.assertEqual(update_var_value, 20)
self.assertEqual(global_step_value, 1)
示例12: testHorzConvWithBlankImage
# 需要导入模块: from tensorflow.python.ops import init_ops [as 别名]
# 或者: from tensorflow.python.ops.init_ops import constant_initializer [as 别名]
def testHorzConvWithBlankImage(self):
image = array_ops.ones((1, 10, 10, 1))
horz_gradients = layers_lib.conv2d_in_plane(
image,
weights_initializer=init_ops.constant_initializer([1, -1]),
kernel_size=[1, 2],
padding='VALID',
activation_fn=None)
init_op = variables_lib.global_variables_initializer()
with self.cached_session() as sess:
sess.run(init_op)
result = sess.run(horz_gradients)
expected = np.zeros((1, 10, 9, 1))
self.assertAllClose(result, expected, rtol=1e-5, atol=1e-5)
示例13: testHorzConvWithRandomImageMultiBatch
# 需要导入模块: from tensorflow.python.ops import init_ops [as 别名]
# 或者: from tensorflow.python.ops.init_ops import constant_initializer [as 别名]
def testHorzConvWithRandomImageMultiBatch(self):
np.random.seed(1)
image = np.random.rand(5, 10, 10, 1)
expected = image[:, :, 0:-1, :] - image[:, :, 1:, :]
tf_image = constant_op.constant(image, dtype=dtypes.float32)
horz_gradients = layers_lib.conv2d_in_plane(
tf_image,
weights_initializer=init_ops.constant_initializer([1, -1]),
kernel_size=[1, 2],
padding='VALID',
activation_fn=None)
init_op = variables_lib.global_variables_initializer()
with self.cached_session() as sess:
sess.run(init_op)
result = sess.run(horz_gradients)
self.assertAllClose(result, expected, rtol=1e-5, atol=1e-5)
示例14: testHorzConvWithRandomImageMultiBatchMultiChannel
# 需要导入模块: from tensorflow.python.ops import init_ops [as 别名]
# 或者: from tensorflow.python.ops.init_ops import constant_initializer [as 别名]
def testHorzConvWithRandomImageMultiBatchMultiChannel(self):
np.random.seed(1)
image = np.random.rand(5, 10, 10, 7)
expected = image[:, :, 0:-1, :] - image[:, :, 1:, :]
tf_image = constant_op.constant(image, dtype=dtypes.float32)
horz_gradients = layers_lib.conv2d_in_plane(
tf_image,
weights_initializer=init_ops.constant_initializer([1, -1]),
kernel_size=[1, 2],
padding='VALID',
activation_fn=None)
init_op = variables_lib.global_variables_initializer()
with self.cached_session() as sess:
sess.run(init_op)
result = sess.run(horz_gradients)
self.assertAllClose(result, expected, rtol=1e-5, atol=1e-5)
示例15: testHorzConvWithVaryingImage
# 需要导入模块: from tensorflow.python.ops import init_ops [as 别名]
# 或者: from tensorflow.python.ops.init_ops import constant_initializer [as 别名]
def testHorzConvWithVaryingImage(self):
image = np.asmatrix(('1.0 2.0 3.0;' '1.1 2.0 4.0;' '-4.3 0.0 8.9'))
expected = np.asmatrix(('-1.0 -1.0;' '-0.9 -2.0;' '-4.3 -8.9'))
expected = np.reshape(np.asarray(expected), (1, 3, 2, 1))
tf_image = constant_op.constant(
image, shape=(1, 3, 3, 1), dtype=dtypes.float32)
horz_gradients = layers_lib.conv2d_in_plane(
tf_image,
weights_initializer=init_ops.constant_initializer([1, -1]),
kernel_size=[1, 2],
padding='VALID',
activation_fn=None)
init_op = variables_lib.global_variables_initializer()
with self.cached_session() as sess:
sess.run(init_op)
result = sess.run(horz_gradients)
self.assertAllClose(result, expected, rtol=1e-5, atol=1e-5)