当前位置: 首页>>代码示例>>Python>>正文


Python init_ops.Initializer方法代码示例

本文整理汇总了Python中tensorflow.python.ops.init_ops.Initializer方法的典型用法代码示例。如果您正苦于以下问题:Python init_ops.Initializer方法的具体用法?Python init_ops.Initializer怎么用?Python init_ops.Initializer使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow.python.ops.init_ops的用法示例。


在下文中一共展示了init_ops.Initializer方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: _getter_kwargs

# 需要导入模块: from tensorflow.python.ops import init_ops [as 别名]
# 或者: from tensorflow.python.ops.init_ops import Initializer [as 别名]
def _getter_kwargs(self, instance):
        defaults = instance._parameter_config.get(self.name, {})
        kwargs = {}
        for key in ['initial', 'shape']:
            value = getattr(self, key, None)
            if value is None:
                try:
                    value = defaults[key]
                except KeyError:
                    raise KeyError(
                        'Parameter {} does not specify a configuration for {}.'
                        .format(self.name, key))
            kwargs[key] = value
        kwargs['name'] = self.name
        init = kwargs.pop('initial')
        from tensorflow.python.ops.init_ops import Initializer
        if init is not None and not isinstance(init, Initializer):
            init = tf.constant_initializer(
                value=init, dtype=self.dtype, verify_shape=True)
        kwargs['initializer'] = init
        kwargs['dtype'] = self.dtype
        kwargs['trainable'] = self.trainable
        return kwargs 
开发者ID:deep-fry,项目名称:mayo,代码行数:25,代码来源:base.py

示例2: linear

# 需要导入模块: from tensorflow.python.ops import init_ops [as 别名]
# 或者: from tensorflow.python.ops.init_ops import Initializer [as 别名]
def linear(input: tf.Tensor,
           output_size: int,
           weight_initializer: Optional[Initializer] = None,
           bias_initializer: Optional[Initializer] = None,
           name: str = "linear") -> tf.Tensor:
    """
    Apply a linear transformation to a tensor.
    
    Parameters
    ----------
    input: tf.Tensor
        The tensor which should be linearly transformed
    output_size: int
        The desired output size of the linear transformation
    weight_initializer: tf.Initializer, optional
        A custom initializer for the weight matrix of the linear transformation
    bias_initializer: tf.Initializer, optional
        A custom initializer for the bias vector of the linear transformation
    name: str, optional
        A name for the operation (default "linear")

    Returns
    -------
    tf.Tensor
        The linearly transformed input tensor
    """
    shape = input.get_shape().as_list()

    with tf.variable_scope(name):
        weights = tf.get_variable(name="weights",
                                  shape=[shape[-1], output_size],
                                  dtype=tf.float32,
                                  initializer=weight_initializer)

        bias = tf.get_variable(name="bias",
                               shape=[output_size],
                               initializer=bias_initializer)

        return tf.matmul(input, weights) + bias 
开发者ID:auDeep,项目名称:auDeep,代码行数:41,代码来源:ops.py

示例3: time_distributed_linear

# 需要导入模块: from tensorflow.python.ops import init_ops [as 别名]
# 或者: from tensorflow.python.ops.init_ops import Initializer [as 别名]
def time_distributed_linear(inputs: tf.Tensor,
                            output_size: int,
                            weight_initializer: Optional[Initializer] = None,
                            bias_initializer: Optional[Initializer] = None,
                            name: str = "time_dist_linear") -> tf.Tensor:
    """
    Applies the same linear transformation to all time steps of a sequence.
    
    Parameters
    ----------
    inputs: tf.Tensor
        The input sequences, of shape [max_time, batch_size, num_features]
    output_size: int
        The desired number of features in the output sequences
    weight_initializer: tf.Initializer, optional
        A custom initializer for the weight matrix of the linear transformation
    bias_initializer: tf.Initializer, optional
        A custom initializer for the bias vector of the linear transformation
    name: str, optional
        A name for the operation (default "time_dist_linear")

    Returns
    -------
    tf.Tensor
        The linearly transformed input sequences, of shape [max_time, batch_size, output_size]
    """
    max_time, batch_size, _ = tf.unstack(tf.shape(inputs))
    static_shape = inputs.shape.as_list()

    with tf.variable_scope(name):
        result = flatten_time(inputs)
        result = linear(result,
                        output_size=output_size,
                        weight_initializer=weight_initializer,
                        bias_initializer=bias_initializer)
        result = restore_time(result, max_time, batch_size, output_size)
        result.set_shape([static_shape[0], static_shape[1], output_size])

        return result 
开发者ID:auDeep,项目名称:auDeep,代码行数:41,代码来源:ops.py

示例4: get_variable

# 需要导入模块: from tensorflow.python.ops import init_ops [as 别名]
# 或者: from tensorflow.python.ops.init_ops import Initializer [as 别名]
def get_variable(self,
                   var_store,
                   name,
                   shape=None,
                   dtype=None,
                   initializer=None,
                   regularizer=None,
                   reuse=None,
                   trainable=True,
                   collections=None,
                   caching_device=None,
                   partitioner=None,
                   validate_shape=True,
                   use_resource=None,
                   custom_getter=None,):
    """Gets an existing variable with this name or create a new one."""
    if regularizer is None:
      regularizer = self._regularizer
    if caching_device is None:
      caching_device = self._caching_device
    if partitioner is None:
      partitioner = self._partitioner
    if custom_getter is None:
      custom_getter = self._custom_getter
    if reuse is None:
      reuse = self._reuse

    full_name = self.name + "/" + name if self.name else name
    # Variable names only depend on variable_scope (full_name here),
    # not name_scope, so we reset it below for the time of variable creation.
    with ops.name_scope(None):
      # Check that `initializer` dtype and `dtype` are consistent before
      # replacing them with defaults.
      if (dtype is not None and initializer is not None and
          not callable(initializer)):
        init_dtype = ops.convert_to_tensor(initializer).dtype.base_dtype
        if init_dtype != dtype:
          raise ValueError("Initializer type '%s' and explicit dtype '%s' "
                           "don't match." % (init_dtype, dtype))
      if initializer is None:
        initializer = self._initializer
      if dtype is None:
        dtype = self._dtype
      if use_resource is None:
        use_resource = self._use_resource

      return var_store.get_variable(
          full_name, shape=shape, dtype=dtype, initializer=initializer,
          regularizer=regularizer, reuse=reuse, trainable=trainable,
          collections=collections, caching_device=caching_device,
          partitioner=partitioner, validate_shape=validate_shape,
          use_resource=use_resource, custom_getter=custom_getter) 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:54,代码来源:variable_scope.py

示例5: conv2d

# 需要导入模块: from tensorflow.python.ops import init_ops [as 别名]
# 或者: from tensorflow.python.ops.init_ops import Initializer [as 别名]
def conv2d(input: tf.Tensor,
           output_dim: int,
           kernel_width: int = 5,
           kernel_height: int = 5,
           horizontal_stride: int = 2,
           vertical_stride: int = 2,
           weight_initializer: Optional[Initializer] = None,
           bias_initializer: Optional[Initializer] = None,
           name: str = "conv2d"):
    """
    Apply a 2D-convolution to a tensor.
    
    Parameters
    ----------
    input: tf.Tensor
        The tensor to which the convolution should be applied. Must be of shape [batch_size, height, width, channels]
    output_dim: int
        The number of convolutional filters
    kernel_width: int, optional
        The width of the convolutional filters (default 5)
    kernel_height: int, optional
        The height of the convolutional filters (default 5)
    horizontal_stride: int, optional
        The horizontal stride of the convolutional filters (default 2)
    vertical_stride: int, optional
        The vertical stride of the convolutional filters (default 2)
    weight_initializer: tf.Initializer, optional
        A custom initializer for the weight matrices of the filters
    bias_initializer: tf.Initializer, optional
        A custom initializer for the bias vectors of the filters
    name: str, optional
        A name for the operation (default "conv2d")

    Returns
    -------
    tf.Tensor
        The result of applying a 2D-convolution to the input tensor.
    """
    shape = input.get_shape().as_list()

    with tf.variable_scope(name):
        weights = tf.get_variable(name="weights",
                                  shape=[kernel_height, kernel_width, shape[-1], output_dim],
                                  initializer=weight_initializer)

        bias = tf.get_variable(name="bias",
                               shape=[output_dim],
                               initializer=bias_initializer)

        conv = tf.nn.conv2d(input,
                            filter=weights,
                            strides=[1, vertical_stride, horizontal_stride, 1],
                            padding='SAME')

        conv = tf.nn.bias_add(conv, bias)

        return conv 
开发者ID:auDeep,项目名称:auDeep,代码行数:59,代码来源:ops.py

示例6: deconv2d

# 需要导入模块: from tensorflow.python.ops import init_ops [as 别名]
# 或者: from tensorflow.python.ops.init_ops import Initializer [as 别名]
def deconv2d(input: tf.Tensor,
             output_shape: Sequence[Union[int, tf.Tensor]],
             kernel_width: int = 5,
             kernel_height: int = 5,
             horizontal_stride: int = 2,
             vertical_stride: int = 2,
             weight_initializer: Optional[Initializer] = None,
             bias_initializer: Optional[Initializer] = None,
             name: str = "deconv2d"):
    """
    Applies a 2D-deconvolution to a tensor.
    
    Parameters
    ----------
    input: tf.Tensor
        The tensor to which a 2D-deconvolution should be applied. Must be of shape [batch_size, height, width, channels]
    output_shape: list of int or tf.Tensor
        The desired output shape.
    kernel_width: int, optional
        The width of the convolutional filters (default 5)
    kernel_height: int, optional
        The height of the convolutional filters (default 5)
    horizontal_stride: int, optional
        The horizontal stride of the convolutional filters (default 2)
    vertical_stride: int, optional
        The vertical stride of the convolutional filters (default 2)
    weight_initializer: tf.Initializer, optional
        A custom initializer for the weight matrices of the filters
    bias_initializer: tf.Initializer, optional
        A custom initializer for the bias vectors of the filters
    name: str, optional
        A name for the operation (default "deconv2d")

    Returns
    -------
    tf.Tensor
        The result of applying a 2D-deconvolution to the input tensor
    """
    shape = input.get_shape().as_list()

    with tf.variable_scope(name):
        # filter : [height, width, output_channels, in_channels]
        weights = tf.get_variable(name="weights",
                                  shape=[kernel_height, kernel_width, output_shape[-1], shape[-1]],
                                  initializer=weight_initializer)

        biases = tf.get_variable(name="bias",
                                 shape=[output_shape[-1]],
                                 initializer=bias_initializer)

        deconv = tf.nn.conv2d_transpose(input,
                                        filter=weights,
                                        output_shape=output_shape,
                                        strides=[1, vertical_stride, horizontal_stride, 1])

        deconv = tf.nn.bias_add(deconv, biases)
        deconv.set_shape([None] + output_shape[1:])

        return deconv 
开发者ID:auDeep,项目名称:auDeep,代码行数:61,代码来源:ops.py

示例7: get_variable

# 需要导入模块: from tensorflow.python.ops import init_ops [as 别名]
# 或者: from tensorflow.python.ops.init_ops import Initializer [as 别名]
def get_variable(self,
                   var_store,
                   name,
                   shape=None,
                   dtype=None,
                   initializer=None,
                   regularizer=None,
                   reuse=None,
                   trainable=True,
                   collections=None,
                   caching_device=None,
                   partitioner=None,
                   validate_shape=True,
                   use_resource=None,
                   custom_getter=None,
                   constraint=None):
    """Gets an existing variable with this name or create a new one."""
    if regularizer is None:
      regularizer = self._regularizer
    if caching_device is None:
      caching_device = self._caching_device
    if partitioner is None:
      partitioner = self._partitioner
    if custom_getter is None:
      custom_getter = self._custom_getter
    if context.in_graph_mode():
      if reuse is None:
        reuse = self._reuse
      if use_resource is None:
        use_resource = self._use_resource
    else:
      reuse = AUTO_REUSE
      use_resource = True

    full_name = self.name + "/" + name if self.name else name
    # Variable names only depend on variable_scope (full_name here),
    # not name_scope, so we reset it below for the time of variable creation.
    with ops.name_scope(None):
      # Check that `initializer` dtype and `dtype` are consistent before
      # replacing them with defaults.
      if (dtype is not None and initializer is not None and
          not callable(initializer)):
        init_dtype = ops.convert_to_tensor(initializer).dtype.base_dtype
        if init_dtype != dtype:
          raise ValueError("Initializer type '%s' and explicit dtype '%s' "
                           "don't match." % (init_dtype, dtype))
      if initializer is None:
        initializer = self._initializer
      if constraint is None:
        constraint = self._constraint
      if dtype is None:
        dtype = self._dtype
      return var_store.get_variable(
          full_name, shape=shape, dtype=dtype, initializer=initializer,
          regularizer=regularizer, reuse=reuse, trainable=trainable,
          collections=collections, caching_device=caching_device,
          partitioner=partitioner, validate_shape=validate_shape,
          use_resource=use_resource, custom_getter=custom_getter,
          constraint=constraint) 
开发者ID:PacktPublishing,项目名称:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代码行数:61,代码来源:variable_scope.py


注:本文中的tensorflow.python.ops.init_ops.Initializer方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。