本文整理汇总了Python中tensorflow.python.ops.gen_nn_ops.dilation2d方法的典型用法代码示例。如果您正苦于以下问题:Python gen_nn_ops.dilation2d方法的具体用法?Python gen_nn_ops.dilation2d怎么用?Python gen_nn_ops.dilation2d使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.python.ops.gen_nn_ops
的用法示例。
在下文中一共展示了gen_nn_ops.dilation2d方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: erosion2d
# 需要导入模块: from tensorflow.python.ops import gen_nn_ops [as 别名]
# 或者: from tensorflow.python.ops.gen_nn_ops import dilation2d [as 别名]
def erosion2d(value, kernel, strides, rates, padding, name=None):
"""Computes the grayscale erosion of 4-D `value` and 3-D `kernel` tensors.
The `value` tensor has shape `[batch, in_height, in_width, depth]` and the
`kernel` tensor has shape `[kernel_height, kernel_width, depth]`, i.e.,
each input channel is processed independently of the others with its own
structuring function. The `output` tensor has shape
`[batch, out_height, out_width, depth]`. The spatial dimensions of the
output tensor depend on the `padding` algorithm. We currently only support the
default "NHWC" `data_format`.
In detail, the grayscale morphological 2-D erosion is given by:
output[b, y, x, c] =
min_{dy, dx} value[b,
strides[1] * y - rates[1] * dy,
strides[2] * x - rates[2] * dx,
c] -
kernel[dy, dx, c]
Duality: The erosion of `value` by the `kernel` is equal to the negation of
the dilation of `-value` by the reflected `kernel`.
Args:
value: A `Tensor`. 4-D with shape `[batch, in_height, in_width, depth]`.
kernel: A `Tensor`. Must have the same type as `value`.
3-D with shape `[kernel_height, kernel_width, depth]`.
strides: A list of `ints` that has length `>= 4`.
1-D of length 4. The stride of the sliding window for each dimension of
the input tensor. Must be: `[1, stride_height, stride_width, 1]`.
rates: A list of `ints` that has length `>= 4`.
1-D of length 4. The input stride for atrous morphological dilation.
Must be: `[1, rate_height, rate_width, 1]`.
padding: A `string` from: `"SAME", "VALID"`.
The type of padding algorithm to use.
name: A name for the operation (optional). If not specified "erosion2d"
is used.
Returns:
A `Tensor`. Has the same type as `value`.
4-D with shape `[batch, out_height, out_width, depth]`.
Raises:
ValueError: If the `value` depth does not match `kernel`' shape, or if
padding is other than `'VALID'` or `'SAME'`.
"""
with ops.name_scope(name, "erosion2d", [value, kernel]) as name:
# Reduce erosion to dilation by duality.
return math_ops.negative(
gen_nn_ops.dilation2d(input=math_ops.negative(value),
filter=array_ops.reverse_v2(kernel, [0, 1]),
strides=strides,
rates=rates,
padding=padding,
name=name))
示例2: erosion2d
# 需要导入模块: from tensorflow.python.ops import gen_nn_ops [as 别名]
# 或者: from tensorflow.python.ops.gen_nn_ops import dilation2d [as 别名]
def erosion2d(value, kernel, strides, rates, padding, name=None):
"""Computes the grayscale erosion of 4-D `value` and 3-D `kernel` tensors.
The `value` tensor has shape `[batch, in_height, in_width, depth]` and the
`kernel` tensor has shape `[kernel_height, kernel_width, depth]`, i.e.,
each input channel is processed independently of the others with its own
structuring function. The `output` tensor has shape
`[batch, out_height, out_width, depth]`. The spatial dimensions of the
output tensor depend on the `padding` algorithm. We currently only support the
default "NHWC" `data_format`.
In detail, the grayscale morphological 2-D erosion is given by:
output[b, y, x, c] =
min_{dy, dx} value[b,
strides[1] * y - rates[1] * dy,
strides[2] * x - rates[2] * dx,
c] -
kernel[dy, dx, c]
Duality: The erosion of `value` by the `kernel` is equal to the negation of
the dilation of `-value` by the reflected `kernel`.
Args:
value: A `Tensor`. 4-D with shape `[batch, in_height, in_width, depth]`.
kernel: A `Tensor`. Must have the same type as `value`.
3-D with shape `[kernel_height, kernel_width, depth]`.
strides: A list of `ints` that has length `>= 4`.
1-D of length 4. The stride of the sliding window for each dimension of
the input tensor. Must be: `[1, stride_height, stride_width, 1]`.
rates: A list of `ints` that has length `>= 4`.
1-D of length 4. The input stride for atrous morphological dilation.
Must be: `[1, rate_height, rate_width, 1]`.
padding: A `string` from: `"SAME", "VALID"`.
The type of padding algorithm to use.
name: A name for the operation (optional). If not specified "erosion2d"
is used.
Returns:
A `Tensor`. Has the same type as `value`.
4-D with shape `[batch, out_height, out_width, depth]`.
Raises:
ValueError: If the `value` depth does not match `kernel`' shape, or if
padding is other than `'VALID'` or `'SAME'`.
"""
with ops.name_scope(name, "erosion2d", [value, kernel]) as name:
# Reduce erosion to dilation by duality.
return math_ops.neg(gen_nn_ops.dilation2d(input=math_ops.neg(value),
filter=array_ops.reverse(
kernel, [True, True, False]),
strides=strides,
rates=rates,
padding=padding,
name=name))