当前位置: 首页>>代码示例>>Python>>正文


Python gen_nn_ops._fractional_max_pool_grad方法代码示例

本文整理汇总了Python中tensorflow.python.ops.gen_nn_ops._fractional_max_pool_grad方法的典型用法代码示例。如果您正苦于以下问题:Python gen_nn_ops._fractional_max_pool_grad方法的具体用法?Python gen_nn_ops._fractional_max_pool_grad怎么用?Python gen_nn_ops._fractional_max_pool_grad使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow.python.ops.gen_nn_ops的用法示例。


在下文中一共展示了gen_nn_ops._fractional_max_pool_grad方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: _FractionalMaxPoolGrad

# 需要导入模块: from tensorflow.python.ops import gen_nn_ops [as 别名]
# 或者: from tensorflow.python.ops.gen_nn_ops import _fractional_max_pool_grad [as 别名]
def _FractionalMaxPoolGrad(op, grad_0, unused_grad_1, unused_grad_2):
  """Returns gradient for FractionalMaxPool.

  Since FractionalMaxPool has three outputs, there are three gradients passed in
  for each of the outputs. Only the first one is useful, the other two gradients
  are empty.

  Args:
    op: The FractionalMaxPoolOp.
    grad_0: Gradient with respect to op.outputs[0]
    unused_grad_1: Gradient with respect to op.outputs[1]/row_seq. It is empty.
    unused_grad_2: Gradient with respect to op.outputs[2]/col_seq. It is empty.

  Returns:
    Input backprop for FractionalMaxPool op.
  """
  # pylint: disable=protected-access
  return gen_nn_ops._fractional_max_pool_grad(op.inputs[0], op.outputs[0],
                                              grad_0, op.outputs[1],
                                              op.outputs[2],
                                              op.get_attr("overlapping")) 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:23,代码来源:nn_grad.py

示例2: testDirectNotUseOverlapping

# 需要导入模块: from tensorflow.python.ops import gen_nn_ops [as 别名]
# 或者: from tensorflow.python.ops.gen_nn_ops import _fractional_max_pool_grad [as 别名]
def testDirectNotUseOverlapping(self):
    for num_batches in [1, 3]:
      for row_window_size in [2, 5]:
        for col_window_size in [2, 4]:
          num_rows = row_window_size * 5
          num_cols = col_window_size * 7
          for num_channels in [1, 2]:
            input_shape = (num_batches, num_rows, num_cols, num_channels)
            with self.test_session() as _:
              input_tensor = tf.constant(self._GenerateUniqueRandomInputTensor(
                  input_shape))
              window_size = [1, row_window_size, col_window_size, 1]
              stride_size = [1, row_window_size, col_window_size, 1]
              padding = "VALID"
              output_tensor = tf.nn.max_pool(input_tensor, window_size,
                                             stride_size, padding)
              output_data = output_tensor.eval()
              output_backprop = self._PRNG.randint(100, size=output_data.shape)
              input_backprop_tensor = gen_nn_ops._max_pool_grad(input_tensor,
                                                                output_tensor,
                                                                output_backprop,
                                                                window_size,
                                                                stride_size,
                                                                padding)
              input_backprop = input_backprop_tensor.eval()
              row_seq = list(range(0, num_rows + 1, row_window_size))
              col_seq = list(range(0, num_cols + 1, col_window_size))
              fmp_input_backprop_tensor = gen_nn_ops._fractional_max_pool_grad(
                  input_tensor,
                  output_tensor,
                  output_backprop,
                  row_seq,
                  col_seq,
                  overlapping=False)
              fmp_input_backprop = fmp_input_backprop_tensor.eval()
              self.assertShapeEqual(input_backprop, fmp_input_backprop_tensor)
              self.assertAllClose(input_backprop, fmp_input_backprop) 
开发者ID:tobegit3hub,项目名称:deep_image_model,代码行数:39,代码来源:fractional_max_pool_op_test.py

示例3: testDirectUseOverlapping

# 需要导入模块: from tensorflow.python.ops import gen_nn_ops [as 别名]
# 或者: from tensorflow.python.ops.gen_nn_ops import _fractional_max_pool_grad [as 别名]
def testDirectUseOverlapping(self):
    for num_batches in [1, 3]:
      for row_window_size in [2, 5]:
        for col_window_size in [2, 4]:
          num_rows = (row_window_size - 1) * 5 + 1
          num_cols = (col_window_size - 1) * 7 + 1
          for num_channels in [1, 2]:
            input_shape = (num_batches, num_rows, num_cols, num_channels)
            with self.test_session() as _:
              input_tensor = tf.constant(self._GenerateUniqueRandomInputTensor(
                  input_shape))
              window_size = [1, row_window_size, col_window_size, 1]
              stride_size = [1, row_window_size - 1, col_window_size - 1, 1]
              padding = "VALID"
              output_tensor = tf.nn.max_pool(input_tensor, window_size,
                                             stride_size, padding)
              output_data = output_tensor.eval()
              output_backprop = self._PRNG.randint(100, size=output_data.shape)
              input_backprop_tensor = gen_nn_ops._max_pool_grad(input_tensor,
                                                                output_tensor,
                                                                output_backprop,
                                                                window_size,
                                                                stride_size,
                                                                padding)
              input_backprop = input_backprop_tensor.eval()
              row_seq = list(range(0, num_rows, row_window_size - 1))
              col_seq = list(range(0, num_cols, col_window_size - 1))
              row_seq[-1] += 1
              col_seq[-1] += 1
              fmp_input_backprop_tensor = gen_nn_ops._fractional_max_pool_grad(
                  input_tensor,
                  output_tensor,
                  output_backprop,
                  row_seq,
                  col_seq,
                  overlapping=True)
              fmp_input_backprop = fmp_input_backprop_tensor.eval()
              self.assertShapeEqual(input_backprop, fmp_input_backprop_tensor)
              self.assertAllClose(input_backprop, fmp_input_backprop) 
开发者ID:tobegit3hub,项目名称:deep_image_model,代码行数:41,代码来源:fractional_max_pool_op_test.py


注:本文中的tensorflow.python.ops.gen_nn_ops._fractional_max_pool_grad方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。