本文整理汇总了Python中tensorflow.python.ops.gen_nn_ops._fractional_avg_pool_grad方法的典型用法代码示例。如果您正苦于以下问题:Python gen_nn_ops._fractional_avg_pool_grad方法的具体用法?Python gen_nn_ops._fractional_avg_pool_grad怎么用?Python gen_nn_ops._fractional_avg_pool_grad使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.python.ops.gen_nn_ops
的用法示例。
在下文中一共展示了gen_nn_ops._fractional_avg_pool_grad方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _FractionalAvgPoolGrad
# 需要导入模块: from tensorflow.python.ops import gen_nn_ops [as 别名]
# 或者: from tensorflow.python.ops.gen_nn_ops import _fractional_avg_pool_grad [as 别名]
def _FractionalAvgPoolGrad(op, grad_0, unused_grad_1, unused_grad_2):
"""Returns gradient for FractionalAvgPool.
Since FractionalAvgPool has three outputs, there are three gradients passed in
for each of the outputs. Only the first one is useful, the other two gradients
are empty.
Args:
op: The FractionalAvgPoolOp.
grad_0: Gradient with respect to op.outputs[0]
unused_grad_1: Gradient with respect to op.outputs[1]/row_seq. It is empty.
unused_grad_2: Gradient with respect to op.outputs[2]/col_seq. It is empty.
Returns:
Input backprop for FractionalAvgPool op.
"""
# pylint: disable=protected-access
return gen_nn_ops._fractional_avg_pool_grad(op.inputs[0].get_shape(), grad_0,
op.outputs[1], op.outputs[2],
op.get_attr("overlapping"))
示例2: testDirectNotUseOverlapping
# 需要导入模块: from tensorflow.python.ops import gen_nn_ops [as 别名]
# 或者: from tensorflow.python.ops.gen_nn_ops import _fractional_avg_pool_grad [as 别名]
def testDirectNotUseOverlapping(self):
for num_batches in [1, 3]:
for row_window_size in [2, 5]:
for col_window_size in [2, 4]:
num_rows = row_window_size * 5
num_cols = col_window_size * 7
for num_channels in [1, 2]:
input_shape = (num_batches, num_rows, num_cols, num_channels)
with self.test_session() as _:
input_tensor = tf.constant(self._GenerateRandomInputTensor(
input_shape).astype(np.float32))
window_size = [1, row_window_size, col_window_size, 1]
stride_size = [1, row_window_size, col_window_size, 1]
padding = "VALID"
output_tensor = tf.nn.avg_pool(input_tensor, window_size,
stride_size, padding)
output_data = output_tensor.eval()
num_elements = 1
for dim_size in output_data.shape:
num_elements *= dim_size
output_backprop = (self._PRNG.rand(num_elements) *
1000).reshape(output_data.shape)
input_backprop_tensor = gen_nn_ops._avg_pool_grad(
input_tensor.get_shape(), output_backprop, window_size,
stride_size, padding)
input_backprop = input_backprop_tensor.eval()
row_seq = list(range(0, num_rows + 1, row_window_size))
col_seq = list(range(0, num_cols + 1, col_window_size))
fap_input_backprop_tensor = gen_nn_ops._fractional_avg_pool_grad(
input_tensor.get_shape(),
output_backprop,
row_seq,
col_seq,
overlapping=False)
fap_input_backprop = fap_input_backprop_tensor.eval()
self.assertShapeEqual(input_backprop, fap_input_backprop_tensor)
self.assertAllClose(input_backprop, fap_input_backprop)
示例3: testDirectUseOverlapping
# 需要导入模块: from tensorflow.python.ops import gen_nn_ops [as 别名]
# 或者: from tensorflow.python.ops.gen_nn_ops import _fractional_avg_pool_grad [as 别名]
def testDirectUseOverlapping(self):
for num_batches in [1, 3]:
for row_window_size in [2, 5]:
for col_window_size in [2, 4]:
num_rows = (row_window_size - 1) * 5 + 1
num_cols = (col_window_size - 1) * 7 + 1
for num_channels in [1, 2]:
input_shape = (num_batches, num_rows, num_cols, num_channels)
with self.test_session() as _:
input_tensor = tf.constant(self._GenerateRandomInputTensor(
input_shape).astype(np.float32))
window_size = [1, row_window_size, col_window_size, 1]
stride_size = [1, row_window_size - 1, col_window_size - 1, 1]
padding = "VALID"
output_tensor = tf.nn.avg_pool(input_tensor, window_size,
stride_size, padding)
output_data = output_tensor.eval()
num_elements = 1
for dim_size in output_data.shape:
num_elements *= dim_size
output_backprop = (self._PRNG.rand(num_elements) *
1000).reshape(output_data.shape)
input_backprop_tensor = gen_nn_ops._avg_pool_grad(
input_tensor.get_shape(), output_backprop, window_size,
stride_size, padding)
input_backprop = input_backprop_tensor.eval()
row_seq = list(range(0, num_rows, row_window_size - 1))
col_seq = list(range(0, num_cols, col_window_size - 1))
row_seq[-1] += 1
col_seq[-1] += 1
fap_input_backprop_tensor = gen_nn_ops._fractional_avg_pool_grad(
input_tensor.get_shape(),
output_backprop,
row_seq,
col_seq,
overlapping=True)
fap_input_backprop = fap_input_backprop_tensor.eval()
self.assertShapeEqual(input_backprop, fap_input_backprop_tensor)
self.assertAllClose(input_backprop, fap_input_backprop)