当前位置: 首页>>代码示例>>Python>>正文


Python gen_nn_ops._batch_norm_with_global_normalization_grad方法代码示例

本文整理汇总了Python中tensorflow.python.ops.gen_nn_ops._batch_norm_with_global_normalization_grad方法的典型用法代码示例。如果您正苦于以下问题:Python gen_nn_ops._batch_norm_with_global_normalization_grad方法的具体用法?Python gen_nn_ops._batch_norm_with_global_normalization_grad怎么用?Python gen_nn_ops._batch_norm_with_global_normalization_grad使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow.python.ops.gen_nn_ops的用法示例。


在下文中一共展示了gen_nn_ops._batch_norm_with_global_normalization_grad方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: _BatchNormWithGlobalNormalizationGrad

# 需要导入模块: from tensorflow.python.ops import gen_nn_ops [as 别名]
# 或者: from tensorflow.python.ops.gen_nn_ops import _batch_norm_with_global_normalization_grad [as 别名]
def _BatchNormWithGlobalNormalizationGrad(op, grad):
  """Return the gradients for the 5 inputs of BatchNormWithGlobalNormalization.

  We do not backprop anything for the mean and var intentionally as they are
  not being trained with backprop in the operation.

  Args:
    op: The BatchNormOp for which we need to generate gradients.
    grad: Tensor.  The gradients passed to the BatchNormOp.

  Returns:
    dx: Backprop for input, which is (grad * (g * rsqrt(v + epsilon)))
    dm: Backprop for mean, which is
        sum_over_rest(grad * g) * (-1 / rsqrt(v + epsilon))
    dv: Backprop for variance, which is
        sum_over_rest(grad * g * (x - m)) * (-1/2) * (v + epsilon) ^ (-3/2)
    db: Backprop for beta, which is grad reduced in all except the
        last dimension.
    dg: Backprop for gamma, which is (grad * ((x - m) * rsqrt(v + epsilon)))
  """
  dx, dm, dv, db, dg = gen_nn_ops._batch_norm_with_global_normalization_grad(
      op.inputs[0], op.inputs[1], op.inputs[2], op.inputs[4], grad,
      op.get_attr("variance_epsilon"), op.get_attr("scale_after_normalization"))
  return dx, dm, dv, db, dg 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:26,代码来源:nn_grad.py

示例2: testBatchNormGradImpl

# 需要导入模块: from tensorflow.python.ops import gen_nn_ops [as 别名]
# 或者: from tensorflow.python.ops.gen_nn_ops import _batch_norm_with_global_normalization_grad [as 别名]
def testBatchNormGradImpl(self):
    x_shape = [7, 5, 4, 6]
    param_shape = [6]
    np.random.seed(1)  # Make it reproducible.
    x_val = np.random.random_sample(x_shape).astype(np.float32)
    m_val = np.random.random_sample(param_shape).astype(np.float32)
    v_val = np.random.random_sample(param_shape).astype(np.float32)
    beta_val = np.random.random_sample(param_shape).astype(np.float32)
    gamma_val = np.random.random_sample(param_shape).astype(np.float32)
    backprop_val = np.random.random_sample(x_shape).astype(np.float32)
    for use_gpu in [False, True]:
      with self.test_session(use_gpu=use_gpu) as sess:
        x = tf.constant(x_val, name="x")
        m = tf.constant(m_val, name="m")
        v = tf.constant(v_val, name="v")
        beta = tf.constant(beta_val, name="beta")
        gamma = tf.constant(gamma_val, name="gamma")
        backprop = tf.constant(backprop_val, name="backprop")
        epsilon = 0.001
        for scale_after_normalization in [True, False]:
          # _batch_norm_with_global_normalization_grad is deprecated in v9
          tf.get_default_graph().graph_def_versions.producer = 8
          grad = gen_nn_ops._batch_norm_with_global_normalization_grad(
              x, m, v, gamma, backprop, epsilon, scale_after_normalization)
          dx, dm, dv, db, dg = grad
          self.assertEqual(grad.dx, dx)
          self.assertEqual(grad.dm, dm)
          self.assertEqual(grad.dv, dv)
          self.assertEqual(grad.db, db)
          self.assertEqual(grad.dg, dg)

          on = self._opsBatchNorm(
              x, m, v, beta, gamma, epsilon, scale_after_normalization, True)
          odx, odm, odv, odb, odg = tf.gradients(
              [on], [x, m, v, beta, gamma], [backprop])
          if scale_after_normalization:
            all_grads = sess.run([dx, dm, dv, db, dg, odx, odm, odv, odb, odg])
            to_check = ["dx", "dm", "dv", "db", "dg"]
          else:
            all_grads = sess.run([dx, dm, dv, db, odx, odm, odv, odb])
            to_check = ["dx", "dm", "dv", "db"]
          for i, _ in enumerate(to_check):
            self.assertAllClose(
                all_grads[i + len(to_check)], all_grads[i], atol=0.000001) 
开发者ID:tobegit3hub,项目名称:deep_image_model,代码行数:46,代码来源:nn_batchnorm_test.py


注:本文中的tensorflow.python.ops.gen_nn_ops._batch_norm_with_global_normalization_grad方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。